Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 693-700    DOI: 10.11900/0412.1961.2014.00498
  论文 本期目录 | 过刊浏览 |
Nb-Ti-Si-Cr基超高温合金表面ZrSi2-NbSi2复合渗层的组织及其抗高温氧化性能*
李轩,郭喜平(),乔彦强
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURE AND OXIDATION BEHAVIOR OF ZrSi2-NbSi2 MULTILAYER COATINGS ON AN Nb-Ti-Si-Cr BASE ULTRAHIGH TEMPERATURE ALLOY
Xuan LI,Xiping GUO(),Yanqiang QIAO
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
引用本文:

李轩, 郭喜平, 乔彦强. Nb-Ti-Si-Cr基超高温合金表面ZrSi2-NbSi2复合渗层的组织及其抗高温氧化性能*[J]. 金属学报, 2015, 51(6): 693-700.
Xuan LI, Xiping GUO, Yanqiang QIAO. MICROSTRUCTURE AND OXIDATION BEHAVIOR OF ZrSi2-NbSi2 MULTILAYER COATINGS ON AN Nb-Ti-Si-Cr BASE ULTRAHIGH TEMPERATURE ALLOY[J]. Acta Metall Sin, 2015, 51(6): 693-700.

全文: PDF(3529 KB)   HTML
摘要: 

采用先磁控溅射Zr膜, 再Si-Y扩散共渗的方法, 在新型Nb-Ti-Si-Cr基超高温合金表面制备了ZrSi2-NbSi2复合渗层, 分析了渗层的显微组织及形成机制, 并研究了其在1250 ℃的恒温氧化行为. 结果表明, 1150, 1250和1350 ℃下Si-Y共渗4 h所制备的渗层具有相似的显微组织, 均主要由ZrSi2外层, (Nb, X)Si2 (X=Ti, Cr, Zr和Hf)中间层和(Ti, Nb)5Si4内层组成. 恒温氧化实验结果表明, 所制备的渗层具有优异的抗高温氧化性能. 氧化时渗层表面形成了由SiO2, TiO2, ZrSiO4和Cr2O3混合组成的致密氧化膜, 能够在1250 ℃空气中保护基体合金至少100 h不被氧化.

关键词 Nb-Ti-Si-Cr基超高温合金ZrSi2-NbSi2复合渗层组织形成抗氧化性能    
Abstract

The rather poor oxidation resistance of Nb-Si base ultrahigh temperature alloys has seriously limited their practical applications at high temperatures. Niobium disilicide coatings, especially those modified by reactive elements (RE) such as Zr and Y, have been shown to possess good anti-oxidation properties at high temperatures due to the formation of a protective RE-containing SiO2 scale. Halide activated pack cementation (HAPC) is one of the most widely used techniques for preparing protective coatings on Nb-Si base ultrahigh temperature alloys, because compact coatings and metallurgical substrate/coating bonds can be obtained with using this technique. However, only a very limited amount of Zr and Y can be diffused into the coatings by a single co-deposition pack cementation process as a result of their large atomic radii and high melting points. To solve this problem, a method such as magnetron sputtering, which can be used for producing overlay coatings with different composition ratios of coating elements, seems to be feasible. In the present study, ZrSi2-NbSi2 multilayer coatings were prepared on an Nb-Ti-Si-Cr base ultrahigh temperature alloy by first magnetron sputtering 2 μm thick Zr-film, and then Si-Y co-deposition at respectively 1150, 1250 and 1350 ℃ by HAPC process. The structures and formation processes, as well as the static oxidation behavior of the coatings were investigated. The results show that the coating prepared at respectively 1150, 1250 and 1350 ℃ had similar structures, consisting of a ZrSi2 outer layer, a (Nb, X)Si2 (X=Ti, Cr, Zr and Hf) middle layer and a (Ti, Nb)5Si4 inner layer. However, the higher co-deposition temperature (1350 ℃) could cause cracks at the interfaces between the constituent layers of the coatings. The formation of the coating was dominated by inward diffusion of Si, accompanied with a certain degree of outward diffusion of Nb, Ti and Cr from the base alloy during the second Si-Y co-deposition process. The oxidation tests demonstrated that the ZrSi2-NbSi2 multilayer coating possessed excellent oxidation resistance. After oxidation, a dense scale consisting of SiO2, TiO2, ZrSiO4 and Cr2O3 formed on the coating, which can protect the base alloy from oxidation at least for 100 h at 1250 ℃ in air.

Key wordsNb-Ti-Si-Cr base ultrahigh temperature alloy    ZrSi2-NbSi2 multilayer coating    structural formation    oxidation-resistant performance
    
基金资助:*国家自然科学基金项目51371145, 51431003和U1453201, 高等学校学科创新引智计划项目B080401和凝固技术国家重点实验室自主研究课题项目116-QP-2014资助
图1  Zr-Y改性硅化物复合渗层的制备工艺
图2  不同Si-Y共渗温度下制备的ZrSi2-NbSi2复合渗层横截面组织的SEM-BSE像和主要组成元素的分布曲线
Point Nb Si Ti Al Cr Zr Y Hf
1 0.8 66.2 3.9 - 2.3 25.5 0.7 0.6
2 4.5 67.3 9.9 0.4 10.2 5.9 0.7 1.1
3 15.9 65.1 8.0 - 8.1 1.1 0.6 1.2
表1  图2c中点1~3所示位置的EDS分析结果
图3  1250 ℃下Si-Y共渗4 h所制备的ZrSi2-NbSi2复合渗层表面、中间层和内层的XRD谱
图4  1250 ℃, 4 h互扩散后Zr膜与基体合金界面的SEM-BSE像和成分分布曲线
图5  1250 ℃下Si-Y共渗4 h所制备的ZrSi2-NbSi2复合渗层试样在1250 ℃空气中氧化100 h后的宏观形貌、表面SEM-BSE像和XRD谱
图6  1250 ℃空气中氧化100 h 后氧化膜及残余渗层横截面的SEM-BSE像
图7  反应ZrO2+SiO2→ZrSiO4在不同温度下的标准Gibbs自由能曲线
Constituent phase Si Zr Ti Al Cr Nb Y O
SiO2 22.6 - 1.1 4.0 0.2 - 0.7 71.4
ZrSiO4 14.4 14.1 1.0 1.1 0.4 0.6 0.3 68.1
TiO2 0.4 1.1 22.4 0.7 0.4 1.1 - 73.9
Cr2O3 2.9 - 0.8 3.5 29.5 0.3 - 63.0
表2  图6b中典型相的EDS分析结果
[1] Bewlay B P, Jackson M R, Zhao J C, Subramaniam P R. Metall Mater Trans, 2003; 34A: 2043
[2] Guo X P, Gao L M, Guan P, Kusabiraki K, Fu H Z. Mater Sci Forum, 2007; 539-543: 3690
[3] Murayama Y, Hanada S. Sci Technol Adv Mater, 2002; 3: 145
[4] Zelenitsas K, Tsakiropoulos P. Mater Sci Eng, 2006; A416: 269
[5] Vilasi M, Steinmetz J, Allemand B G. J Adv Mater, 2000; 32: 53
[6] Suzuki R O, Ishikawa M, Ono K. J Alloys Compd, 2002; 336: 280
[7] Tian X D, Guo X P. Acta Metall Sin, 2008; 44: 585 (田晓东, 郭喜平. 金属学报, 2008; 44: 585)
[8] Zhang P, Guo X P. Corros Sci, 2013; 71: 10
[9] Majumdar S, Sengupta T P, Kale G B, Sharma I G. Surf Coat Technol, 2006; 200: 3713
[10] Cockeram B V, Rapp R A. Mater Sci Eng, 1995; A192: 980
[11] Dzyadikevich Y V, Kitskai L I. Powder Metall Met Ceram, 1997; 36: 77
[12] Yoon J K, Kim G H, Han J H, Shon I J, Doh J M, Hong K T. Intermetallics, 2005; 13: 1146
[13] Christensen R J, Tolpygo V K, Clarke D R. Acta Mater, 1997; 45: 1761
[14] Qiao Y Q, Guo X P. Appl Surf Sci, 2010; 256: 7462
[15] Wang W, Yuan B F, Zhou C G. Corros Sci, 2014; 80: 164
[16] Tian X D, Guo X P. Surf Coat Technol, 2009; 204: 313
[17] Hong S J, Hwang G H, Han W K, Lee K S, Kang S G. Intermetallics, 2010; 18: 864
[18] Xiang Z D, Datta P K. Acta Mater, 2006; 54: 4453
[19] Li X, Guo X P. Acta Metall Sin, 2012; 48: 1394 (李 轩, 郭喜平. 金属学报, 2012; 48: 1394)
[20] Kelly P J, Brien J O, Arnell R D. Vacuum, 2004; 74: 1
[21] Zhang P, Guo X P. Acta Metall Sin, 2010; 46: 821 (张 平, 郭喜平. 金属学报, 2010; 46: 821)
[22] Salpadoru N H, Flower H M. Metall Mater Trans, 1995; 26A: 243
[23] Wang R C, Jin Z P, Liu C L. J Cent South Univ Technol, 2002; 33: 385 (王日初, 金展鹏, 柳春雷. 中南工业大学学报, 2002; 33: 385)
[24] Zhao J C, Jackson M R, Peluso L A. Mater Sci Eng, 2004; A372: 21
[25] Sanjib M, Indrakumar S, Indradev S, Parag B. J Electrochem Soc, 2008; 155D: 743
[26] Cockeram B V, Rapp R A. Metall Mater Trans, 1995; 26A: 777
[27] Pan J S,Tong J M,Tian M B. Fundamentals of Materials Science. Beijing: Tsinghua University Press, 1998: 466 (潘金生,仝建民,田民波. 材料科学基础. 北京: 清华大学出版社, 1998: 466)
[28] Patil R V, Kale G B, Garg S P. J Nucl Mater, 1995; 223: 169
[29] Milanese C, Buscaglia V, Maglia F, Tamburini U A. Acta Mater, 2003; 51: 4837
[30] Colinet C, Tedenac J C. Intermetallics, 2010; 18: 1444
[31] Fernandes P B, Coelho G C, Ferreira F, Nunes C A, Sundman B. Intermetallics, 2002; 10: 993
[32] Pelleg J, Shor Y. Microelectron Eng, 2003; 69: 65
[33] Kaiser A, Lobert M, Telle R. J Eur Ceram Soc, 2008; 28: 2199
[34] Ebener S, Winter W. J Eur Ceram Soc, 1996; 16: 1179
[35] Moon D P. Mater Sci Technol, 1989; 5: 754
[36] Thanneeru R, Patil S, Deshpande S, Seal S. Acta Mater, 2007; 55: 3457
[1] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[2] 李天昕, 卢一平, 曹志强, 王同敏, 李廷举. 难熔高熵合金在反应堆结构材料领域的机遇与挑战[J]. 金属学报, 2021, 57(1): 42-54.
[3] 李斌, 林小辉, 李瑞, 张国君, 李来平, 张平祥. 不同B含量Mo-Si-B合金的高温抗氧化性能[J]. 金属学报, 2018, 54(12): 1792-1800.
[4] 赵海根,李树索,裴延玲,宫声凯,徐惠彬. Ni3Al基单晶合金IC21的微观组织及力学性能[J]. 金属学报, 2015, 51(10): 1279-1287.
[5] 杨凌霄,郭喜平,乔彦强,潘若冰. Nb-Ti-Si基超高温合金表面Ge-Y改性硅化物渗层的组织形成[J]. 金属学报, 2013, 49(11): 1433-1438.
[6] 李轩 郭喜平. 催化剂对Nb-Ti-Si-Cr基超高温合金表面Si-Zr-Y共渗层组织的影响[J]. 金属学报, 2012, 48(11): 1394-1402.
[7] 范永中 张淑娟 涂金伟 孙霞 刘芳 李明升. Si和Y掺杂对(Ti, Al)N涂层结构和性能的影响[J]. 金属学报, 2012, 48(1): 99-106.
[8] 张平 郭喜平. Al对Nb-Ti-Si基合金表面Si-Al-Y2O3共渗层的影响[J]. 金属学报, 2010, 46(7): 821-831.
[9] 田艳红 王春青 赵少伟. Cu焊盘TiN/Ag金属化层超声键合性能及抗氧化性能[J]. 金属学报, 2010, 46(5): 618-622.
[10] 郭建亭; 袁超; 侯介山 . 稀土元素在NiAl合金中的作用[J]. 金属学报, 2008, 44(5): 513-520 .
[11] 田晓东; 郭喜平 . 铌基超高温合金表面包埋Si-Y共渗涂层的显微组织[J]. 金属学报, 2008, 44(5): 585-588 .
[12] 张继;张志宏;石建东;邹敦叙;仲增墉. TiAl合金细小全层片组织形成机理[J]. 金属学报, 1998, 34(9): 919-922.
[13] 王淑荷;郭建亭;李辉;孙超;谭明晖;赖万慧. YNi_5相及其对Ni_3Al合金性能的影响[J]. 金属学报, 1991, 27(6): 39-43.