Please wait a minute...
金属学报  2015, Vol. 51 Issue (6): 701-712    DOI: 10.11900/0412.1961.2014.00491
  论文 本期目录 | 过刊浏览 |
X65钢在含超临界CO2的NaCl溶液中腐蚀机制的讨论*
魏亮,庞晓露,高克玮()
北京科技大学材料物理与化学系, 北京 100083
CORROSION MECHANISM DISCUSSION OF X65 STEEL IN NaCl SOLUTION SATURATED WITH SUPERCRITICAL CO2
Liang WEI,Xiaolu PANG,Kewei GAO()
Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083
引用本文:

魏亮, 庞晓露, 高克玮. X65钢在含超临界CO2的NaCl溶液中腐蚀机制的讨论*[J]. 金属学报, 2015, 51(6): 701-712.
Liang WEI, Xiaolu PANG, Kewei GAO. CORROSION MECHANISM DISCUSSION OF X65 STEEL IN NaCl SOLUTION SATURATED WITH SUPERCRITICAL CO2[J]. Acta Metall Sin, 2015, 51(6): 701-712.

全文: PDF(14106 KB)   HTML
摘要: 

利用高温高压反应釜研究了X65管线钢在含有超临界CO2 (supercritical CO2, SC CO2)的3.5%NaCl溶液、去离子水以及溶解有NaCl溶液的超临界CO2相中的腐蚀行为. 结果表明, Cl-的存在导致X65钢在含有饱和SC CO2的NaCl溶液中的腐蚀速率显著升高, 腐蚀产物膜的晶粒形貌发生改变. X65钢在超临界CO2相中的腐蚀速率远远低于在NaCl溶液中的腐蚀速率, 但出现局部腐蚀. X65钢在含有SC CO2的NaCl溶液中的腐蚀分为3个阶段: 第一个阶段为基体快速溶解阶段, 表面没有FeCO3生成; 第二阶段为FeCO3开始沉积阶段, 形成的FeCO3腐蚀产物膜不完整, 增大了阴极还原反应面积, 导致腐蚀加速; 第三阶段为腐蚀产物膜保护阶段, 形成的腐蚀产物膜致密性逐渐提高, 保护性好, 但Cl-仍然可以穿过腐蚀产物膜到达膜基界面, 从而加速钢的腐蚀. 建立了普通管线钢在含Cl-溶液中的超临界CO2腐蚀模型.

关键词 CO2腐蚀超临界CO2X65钢Cl-腐蚀机制    
Abstract

In recent years, the corrosion problem of steels under supercritical CO2/H2O system in oil/gas production has got more and more attention. The temperature and pressure of some oil wells in China usually exceed 120 ℃ and 100 MPa, where CO2 is in supercritical state. To transportation easier and cost reduction, the oil/gas in pipelines is usually pressured to a high pressure, normally causes CO2 in supercritical state. The supercritical CO2 corrosion environment includes CO2-saturated water and H2O-saturated CO2 phases. Moreover, corrosive ions such as Cl- usually exists in CO2 corrosion environment, however the influence of Cl- on corrosion of carbon steel in supercritical CO2-saturated NaCl solution and NaCl solution-saturated supercritical CO2 are investigated limited. The corrosion behaviors and corrosion rates of X65 carbon steel exposed in supercritical CO2-saturated 3.5%NaCl solution, supercritical CO2-saturated deionized water and NaCl solution-saturated supercritical CO2 systems were investigated. SEM, EDS and XRD were used to analyze the morphology and characteristic of corrosion product scale on the steel surface. The results show that the addition of Cl- in supercritical CO2-satureated water significantly increased the corrosion rate of X65 steel, and modified the FeCO3 grain morphology. The average corrosion rate of X65 steel in NaCl solution-saturated supercritical CO2 was much lower than in supercritical CO2-saturated NaCl solution, but in supercritical CO2 phase X65 steel suffered serious localized corrosion. The corrosion process of X65 steel in supercritical CO2-saturated NaCl solution could be divided into three stages: the first was the active dissolution stage, the surface of X65 steel was corroded inhomogeneous due to the competitive adsorption between Cl- and H2CO3, HCO3-, and Fe3C as well as some lumpish matrix were residued on steel surface; the second was the initiation stage of FeCO3 precipitation, Cl- postponed the precipitation of FeCO3, the FeCO3 scale formed in this period was incomplete, and increased the area of cathodic reaction subsequently the corrosion rate; the last was the protective stage of FeCO3 corrosion scale, the corrosion product scale formed in this period was denser and provided better protectiveness to X65 steel matrix, however Cl- could pass this scale and reach the scale/matrix interface, resulted in the corrosion rate of X65 steel keeping at a higher value than in deionized water environment. The corrosion model of normal pipelines was developed to better understand the corrosion mechanism in supercritical CO2-saturated Cl--containing solution.

Key wordsCO2 corrosion    supercritical CO2    X65 steel    Cl-    corrosion mechanism
    
基金资助:*国家自然科学基金项目51271024和北京市自然科学基金重点项目 2131004资助
CO2 pressure / MPa Immersion time / h Deionized water[9] NaCl solution
9.5 0.5 28.3 (±1.4) 90.0 (±7.4)
96 7.4 (±0.5) 13.5 (±1.8)
1.0 0.5 17.2 (±1.0) 44.4 (±0.2)
96 1.8 (±0.2) 7.5 (±1.1)
表1  X65钢在80 ℃, 压力为9.5和1.0 MPa条件下在去离子水和NaCl溶液中浸泡0.5和96 h的腐蚀速率
图1  X65钢的微观组织
图2  X65钢在80 ℃, 1.0和9.5 MPa下在去离子水中浸泡0.5和96 h后形成的腐蚀产物膜的表面和截面形貌
图3  X65钢在80 ℃, 9.5和1.0 MPa下NaCl溶液中浸泡0.5和96 h后的表面和截面形貌
图4  X65钢在不同条件下腐蚀96 h后形成的腐蚀产物膜的XRD谱
图5  X65钢在含水SC CO2相中浸泡96 h后形成的腐蚀产物膜的表面和截面形貌
图6  X65钢在SC CO2相和NaCl溶液相中分别浸泡96 h去膜后的表面形貌
图7  X65钢在含有饱和SC CO2的NaCl水溶液中浸泡不同时间后的腐蚀产物膜的表面形貌
图8  X65钢在含有饱和SC CO2的NaCl水溶液中浸泡不同时间后的腐蚀产物膜的截面形貌
图9  X65钢在9.5 MPa和80 ℃条件下在NaCl溶液中浸泡12 h形成的腐蚀产物膜的XRD谱
图10  腐蚀产物膜的弹性模量E随时间的变化关系
图11  X65钢在含有饱和SC CO2的NaCl水溶液中浸泡不同时间后的膜基界面富Cl-区的EDS分析和Cl-含量随浸泡时间的变化关系
图12  X65钢浸泡不同时间去膜后基体表面的粗糙度随浸泡时间的变化关系以及在0.5和96 h测得的基体表面轮廓图
图13  X65钢在9.5 MPa 和80 ℃条件下浸泡在含有饱和SC CO2的NaCl水溶液和去离子水[9]中的腐蚀速率随浸泡时间的变化关系
图14  X65钢在含有SC CO2的NaCl溶液中的腐蚀机制示意图
[1] Gray L G S, Anderson B G, Danysh M J, Tremaine P G. Corrosion 1989, Houston: NACE, 1989: paper No.464
[2] Kermani M B, Morshed A. Corrosion, 2003; 59: 659
[3] Nesic S. Corros Sci, 2007; 49: 4308
[4] Nesic S, Postlethwaite J, Olsen S. Corrosion, 1996; 52: 280
[5] Choi Y S, Nesic S. Int J Greenhouse Gas Control, 2011; 5: 788
[6] Cui Z D, Wu S L, Zhu S L, Yang X J. Appl Surf Sci, 2006; 252: 2368
[7] Zhang Y C, Qu S P, Pang X L, Gao K W. Corros Prot, 2011; 32: 854 (张玉成, 屈少鹏, 庞晓露, 高克玮. 腐蚀与防护, 2011; 32: 854)
[8] Yevtushenko O, B?βler R. Corrosion 2014, Houston: NACE, 2014: paper No.3838
[9] Zhang Y C, Pang X L, Qu S P, Li X, Gao K W. Corros Sci, 2012; 59: 186
[10] Choi Y S, Magalhaes A A O, Farelas F, Andrade C D A, Nesic S. Corrosion 2013, Houston: NACE, 2013: paper No.2380
[11] Cui Z D, Wu S L, Li C F, Zhu S L, Yang X J. Mater Lett, 2004; 58: 1035
[12] Zhang Y C, Gao K W, Schmitt G. Corrosion 2011, Houston: NACE, 2011: paper No.11378
[13] Schremp F W, Roberson G R. Soc Pet Eng J, 1975; 15: 227
[14] Zhang Y C, Gao K W, Schmitt G. Mater Perform, 2011; 50: 62
[15] Yevtushenko O, Bettge F, Bohraus S, Baesslera R, Pfennig A, Kranzmann A. Process Saf Environ Prot, 2014; 92: 108
[16] Liu Q Y, Mao L J, Zhou S W. Corros Sci, 2014; 84: 165
[17] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y Q. Acta Metall Sin, 2003; 39: 848 (陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2003; 39: 848)
[18] Schmitt G. Corrosion 1984, Houston: NACE, 1984: paper No.1
[19] Ikeda A, Mukai S, Uede M. Corrosion 1984, Houston: NACE, 1984; 1: 39
[20] Sun J B, Liu W, Yang L Y, Yang J W, Lu M X. Acta Metall Sin, 2008; 44: 991 (孙建波, 柳 伟, 杨丽颖, 杨建炜, 路民旭. 金属学报, 2008; 44: 991)
[21] Dugstad A. Corrosion 2006, Houston: NACE, 2006: paper No.06111
[22] Tanupabrungsun T, Brown B, Nesic S. Corrosion 2013: Houston: NACE, 2013: paper No.2348
[23] Dugstad A. Corrosion 1998, Houston: NACE, 1998: paper No.31
[24] Nesic S, Nordsveen M, Nyborg R, Stangeland A. Corrosion, 2003; 59: 489
[25] Sun W, Nesic S, Woollam R C. Corros Sci, 2009; 51: 1273
[26] Johnson M L, Tomson M B. Corrosion 1991, Houston: NACE, 1991: paper No.268
[27] Van Hunnik E W J, Pots B F M, Hendriksen E L J A. Corrosion 1996, Houston: NACE, 1996: paper No.6
[28] Hedayat A, Yannacopoulos S, Postlethwaite J. Corrosion, 1992; 48: 953
[29] Chen C F, Lu M X, Zhao G X, Bai Z Q, Yan M L, Yang Y Q. Acta Metall Sin, 2002; 38: 411 (陈长风, 路民旭, 赵国仙, 白真权, 严密林, 杨延清. 金属学报, 2002; 38: 411)
[30] Ramachandran S, Campbell S, Ward M B. Corrosion 2000, Houston: NACE, 2000: paper No.25
[1] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[2] 刘雨薇, 赵洪涛, 王振尧. 碳钢和耐候钢在南沙海洋大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(9): 1247-1254.
[3] 魏洁, 魏英华, 李京, 赵洪涛, 吕晨曦, 董俊华, 柯伟, 何小燕. 带损伤环氧涂层钢筋在Cl-和碳化耦合作用下的腐蚀行为[J]. 金属学报, 2020, 56(6): 885-897.
[4] 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.
[5] 方信贤,薛亚军,戴玉明,王章忠. Ni-W-Cu-P沉积机制及在酸性溶液中的腐蚀行为*[J]. 金属学报, 2016, 52(11): 1432-1440.
[6] 卢云飞, 阳靖峰, 董俊华, 柯伟. NiCu低合金钢在含Cl-的除氧NaHCO3溶液中的腐蚀行为研究[J]. 金属学报, 2015, 51(4): 440-448.
[7] 孙冲, 孙建波, 王勇, 王世杰, 刘建新. 超临界CO2/油/水系统中油气管材钢的腐蚀机制*[J]. 金属学报, 2014, 50(7): 811-820.
[8] 王长罡,董俊华,柯伟,李晓芳. HCO3-, SO42-和Cl-混合体系中Cu点蚀行为的研究[J]. 金属学报, 2013, 49(2): 207-213.
[9] 王长罡 董俊华 柯伟 陈楠 李晓芳. HCO3-和Cl-混合体系中Cu的点蚀行为研究[J]. 金属学报, 2012, 48(11): 1365-1373.
[10] 郭少强 许立宁 常炜 密雅荣 路民旭. 3Cr管线钢CO2腐蚀实验研究[J]. 金属学报, 2011, 47(8): 1067-1074.
[11] 陈雯 杜荣归 胡融刚 时海燕 朱燕峰 林昌健. 模拟混凝土孔隙液中钢筋表面膜组成与腐蚀行为的关联[J]. 金属学报, 2011, 47(6): 735-742.
[12] 阳靖峰 董俊华 柯伟. 重碳酸盐溶液中SO42-和Cl-对低碳钢活化/钝化腐蚀行为的影响[J]. 金属学报, 2011, 47(10): 1321-1326.
[13] 乔冰 杜荣归 陈雯 朱燕峰 林昌健. NO2-和Cl-对模拟混凝土孔隙液中钢筋腐蚀行为的影响[J]. 金属学报, 2010, 46(2): 245-250.
[14] 宋义全 杜翠薇 张新 李晓刚. Cl-浓度对X70管线钢缝隙腐蚀的影响[J]. 金属学报, 2009, 45(9): 1130-1134.
[15] 袁蕾 王华明 . 镍基固溶体增韧Cr13Ni5Si2合金在含Cl-溶液中的腐蚀行为[J]. 金属学报, 2009, 45(11): 1384-1389.