Please wait a minute...
金属学报  2013, Vol. 49 Issue (7): 881-889    
  论文 本期目录 | 过刊浏览 |
16Mn钢及其热影响区在碱性硫化物环境中的应力腐蚀行为与机理
郝文魁,刘智勇,李晓刚,杜翠薇
北京科技大学腐蚀与防护中心, 北京 100083
STRESS CORROSION CRACKING AND ITS MECHANISM OF 16Mn STEEL AND HEAT-AFFECTED ZONE IN ALKALINE SULFIDE SOLUTIONS
HAO Wenkui,LIU Zhiyong,LI Xiaogang,DU Cuiwei
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
引用本文:

郝文魁,刘智勇,李晓刚,杜翠薇. 16Mn钢及其热影响区在碱性硫化物环境中的应力腐蚀行为与机理[J]. 金属学报, 2013, 49(7): 881-889.
HAO Wenkui, LIU Zhiyong, LI Xiaogang, DU Cuiwei. STRESS CORROSION CRACKING AND ITS MECHANISM OF 16Mn STEEL AND HEAT-AFFECTED ZONE IN ALKALINE SULFIDE SOLUTIONS[J]. Acta Metall Sin, 2013, 49(7): 881-889.

全文: PDF(5115 KB)  
摘要: 

利用电化学测量技术、慢应变速率拉伸实验和U形弯试样浸泡实验,研究了16Mn钢及其模拟热影响区(HAZ)在碱性硫化物和Cl-介质中的应力腐蚀开裂(SCC)行为与机理. 结果表明: 16Mn钢原始组织、粗晶组织(空冷组织)和硬化组织(淬火组织)在碱性硫化物环境中均呈钝化状态,钝化电流密度依次降低. 由淬火组织、空冷组织和原始组织的自然腐蚀电位依次降低可以推知,HAZ为阴极, 焊缝和基体为阳极, 长期服役后靠近熔合线处由于腐蚀暴露出残余拉应力区, 引起SCC. HAZ中硬化组织、粗晶组织和原始组织在碱性硫化物环境下的应力腐蚀敏感性依次降低,其中硬化组织的SCC特征明显, 而其余2种组织的SCC特征不明显.16Mn钢焊缝区在碱性硫化物环境中SCC裂纹扩展机制为沿晶型阳极溶解机制.

关键词 16Mn钢碱性硫化物应力腐蚀开裂    
Abstract

Stress corrosion cracking (SCC) of 16Mn steel and its heat-affected zone (HAZ) in alkaline solution with sulfide and Cl- was investigated by electrochemical technology, slow strain rate tensile (SSRT) test and U-bent specimen immersing test. Results show that the original microstructure, the coarse grain structure acquired by air cooling treatment and the hardening microstructure obtained from quenching performed a passivation behavior in alkaline sulfide solution. Correspondingly, the passivation current density of them decreased gradually with the cooling rate increased. The corrosion potential of the quenching microstructure, air-cooling microstructure and original microstructure decreases sequentially, indicating that HAZ is the cathodic area and the fusion line as well as bulk steel anodic area. Based on the results, the corrosion is feasible to happen nearby the fusion line would increase, and thus the residual tensile stress area would be exposed to the electrolyte after long-term service, which results in SCC. The susceptibility of SCC was lowered down gradually among hardening microstructure, coarse grain microstructure and original microstructure. SCC mechanism of 16Mn steel in the alkaline solution containing sulfide was anodic dissolution (AD) in terms of intergranular fracture.

Key words16Mn steel    alkaline, sulfide    stress corrosion cracking (SCC)
收稿日期: 2012-12-12     
基金资助:

国家科技支撑计划项目2011BAK06B01--01和国家自然科学基金项目50901041资助

作者简介: 郝文魁, 男, 1985年生, 博士生

[1] Turnbull A, Nimmo B.  Corros Eng Sci Technol, 2005; 40: 103

[2] Liu X C, Liu F. Chem Eng Equip, 2010; (10): 44
(刘晓春, 刘锋. 化学工程与装备, 2010; (10): 44)
[3] Veloz M A, Gonzalez I.  Electrochim Acta, 2002; 48: 135
[4] Ma H Y, Cheng X L, Li G Q, Chen S H, Quan Z L, Zhao S Y, Niu L.  Corros Sci, 2000; 42: 1669
[5] Shoesmith D W, Bailey M G, Ikeda B.  Electrochim Acta, 1978; 23: 1329
[6] Shoesmith D W, Taylor P, Bailey M G, Ikeda B.  Electrochim Acta, 1978; 23: 903
[7] Yin Z F, Zhao W Z, Bai Z Q.  Electrochim Acta, 2004; 53: 3690
[8] Yang H Y, Chen J J, Cao C N, Cao D Z.  Chin Soc Corros Prot, 2000; 20: 1
(杨怀玉, 陈家坚, 曹楚南, 曹殿珍. 中国腐蚀与防护学报, 2000; 20: 1)
[9] Gupta D V S.  Corrosion, 1981; 37: 611
[10] Yang H Y, Chen J J, Cao C N, Cao D Z.  Chin Soc Crros Prot, 2000; 20: 97
(杨怀玉, 陈家坚, 曹楚南, 曹殿珍, 中国腐蚀与防护学报, 2000; 20: 97)
[11] Salvarezza R C, Videla H A, Arvia A J.  Corros Sci, 1982; 22: 815
[12] Vera J, Kapusta S, Hackerman N J.  Electrochem Soc, 1986; 133: 461
[13] Liu L W, Hu Q, Guo F.  Chin Soc Corros Prot, 2002; 22: 22
(刘烈炜, 胡倩, 郭. 中国腐蚀与防护学报, 2002; 22: 22)
[14] Ramanarayanan T A, Smith S N.  Corrosion, 1990; 43: 4001
[15] Ma Q, Zhang W, Ye T X, Wu D Y.  Mater Prot, 2012; 45(3): 27
(马琦, 张玮, 叶童, 吴东阳. 材料保护, 2012; 45(3): 27)
[16] Domizzi G, Anteri G, Ovejiero-Garcia J.  Corros Sci, 2001; 9: 326
[17] Huang S L, Zhang J X, Chen Z Q, Xu K.  Weld Technol, 2004; 33: 8
(黄嗣罗, 张建勋, 陈宗强, 徐楷. 焊接技术, 2004; 33: 8)
[18] Zhang X Y, Du Y L, Zheng L Q.  Mater Prot, 1998; 31(1): 3
(张学元, 杜元龙, 郑立群. 材料保护, 1998; 31(1): 3)
[19] Rocchini G A.  Corrosion, 1987; 6: 624
[20] Panossian Z, Almeida N L, Raquel Maria F.  Corros Sci, 2012; 58: 1
[21] Smanio V, Kitte J, Fregonese M, Cassagne T, Normand B, Ropital F. Corros Sci, 2011; 67: 1
[22] Liu Z Y, Li M, Li X G.  Chin Soc Corros Prot, 2006; 26: 360
(刘智勇, 李明, 李晓刚. 中国腐蚀与防护学报, 2006; 26: 360)
[23] Huang H H, Tsai W T, Lee J T.  Mater Sci Eng, 1994; A188: 219
[24] Huang H H, Lee J T, Tsai W T.  Mater Chem Phys, 1999; 58: 177
[25] Qiao L, Mao X.  Acta Metall Mater, 1995; 43: 4001
[26] Nicholas M M, Seefeldt R.  Electrochim Acta, 2004; 49: 4303
[27] Suh M S, Park C J, Kwon H S.  Surf Coat Technol, 2006; 200: 3527
[28] Hong J H, Lee S H, Kim J G.  Corros Sci, 2012; 54: 174
[29] Chen Y Y, Liu Y M, Shih H C.  Mater Sci Eng, 2005; A407: 114
[30] Srinivasan P B, Sharkawy S W, Dietzel W.  Mater Sci Eng, 2004; A385: 6
[31] Liu Z Y, Li X G, Du C W, Zhai G L, Cheng Y F.  Corros Sci, 2008; 50: 2251
[32] Torres-Islas A, Gonzalez-Rodriguez J G, Uruchurtu J, Serna S.  Corros Sci, 2008; 50: 2831
[33] Torres-Islasa A, Salinas-Bravob V M, Albarranc J L, Gonzalez-Rodriguezd J G.  Int J Hydrogen Energy, 2005; 30: 1317
[34] Uraguchi D, Terada M.  J Am Chem Soc, 2004; 126: 5356
[35] Xiong J P, Chen W J, Qu J S, Lv H Y.  J Xihua Univ (Nat Sci), 2011; 30: 85
(熊建平, 陈文静, 屈金山, 吕华勇. 西华大学学报(自然科学版), 2011; 30: 85)
[36] Li M, Li X G, Cheng G, Liu Z Y.  J Univ Sci Technol Beijing, 2007; 29: 282
(李明, 李晓刚, 陈钢, 刘智勇. 北京科技大学学报, 2007; 29: 282)
[37] Tanga J W, Shao Y, Guo J.  Corros Sci, 2011; 53: 1715
[38] Tanga J W, Shao Y, Guo J.  Corros Sci, 2010; 52: 2050
[39] Zhao M C, Shan Y Y, Li Y M, Yang K.  Acta Metall Sin, 2001; 37: 1087

(赵明纯, 单以银, 李玉梅, 杨柯. 金属学报, 2001; 37: 1087)

[1] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[2] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[3] 邓平,孙晨,彭群家,韩恩厚,柯伟,焦治杰. 核用304不锈钢辐照促进应力腐蚀开裂研究[J]. 金属学报, 2019, 55(3): 349-361.
[4] 余军, 张德平, 潘若生, 董泽华. 井下含硫环空液中P110油管钢应力腐蚀开裂的电化学噪声特征[J]. 金属学报, 2018, 54(10): 1399-1407.
[5] 苑洪钟,刘智勇,李晓刚,杜翠薇. 外加电位对X90钢及其焊缝在近中性土壤模拟溶液中应力腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 797-807.
[6] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[7] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.
[8] 张子龙, 夏爽, 曹伟, 李慧, 周邦新, 白琴. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响*[J]. 金属学报, 2016, 52(3): 313-319.
[9] 马宏驰, 杜翠薇, 刘智勇, 郝文魁, 李晓刚, 刘超. E690高强钢在SO2污染海洋大气环境中的应力腐蚀行为研究*[J]. 金属学报, 2016, 52(3): 331-340.
[10] 孙敏,李晓刚,李劲. 新型超高强度钢Cr12Ni4Mo2Co14在酸性环境中的应力腐蚀行为*[J]. 金属学报, 2016, 52(11): 1372-1378.
[11] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[12] 郭跃岭, 韩恩厚, 王俭秋. 锻造和热处理对316LN不锈钢在高温碱性溶液中应力腐蚀行为的影响*[J]. 金属学报, 2015, 51(6): 659-667.
[13] 闫茂成, 王俭秋, 韩恩厚, 孙成, 柯伟. 埋地管线阴极保护屏蔽剥离涂层下薄液腐蚀环境特征及演化[J]. 金属学报, 2014, 50(9): 1137-1145.
[14] 范林,刘智勇,杜翠薇,李晓刚. X80管线钢高pH应力腐蚀开裂机制与电位的关系[J]. 金属学报, 2013, 49(6): 689-698.
[15] 朱敏,刘智勇,杜翠薇,李晓刚,李建宽,李琼,贾静焕. X65和X80管线钢在高pH值溶液中的应力腐蚀开裂行为及机理[J]. 金属学报, 2013, 49(12): 1590-1596.