Please wait a minute...
金属学报  2013, Vol. 49 Issue (11): 1392-1398    DOI: 10.3724/SP.J.1037.2013.00410
  论文 本期目录 | 过刊浏览 |
Mo-Si-B三元系中T2相的脆-韧转变行为
潘昆明,张来启,王礞,林均品
北京科技大学新金属材料国家重点实验室, 北京 100083
BRITTLE-TO-DUCTILE TRANSITION FOR T2 IN THE Mo-Si-B SYSTEM
PAN Kunming, ZHANG Laiqi, WANG Meng, LIN Junpin
State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing, Beijing 100083
引用本文:

潘昆明,张来启,王礞,林均品. Mo-Si-B三元系中T2相的脆-韧转变行为[J]. 金属学报, 2013, 49(11): 1392-1398.
PAN Kunming, ZHANG Laiqi, WANG Meng, LIN Junpin. BRITTLE-TO-DUCTILE TRANSITION FOR T2 IN THE Mo-Si-B SYSTEM[J]. Acta Metall Sin, 2013, 49(11): 1392-1398.

全文: PDF(3804 KB)  
摘要: 

采用压缩和单边缺口三点弯曲实验,研究了Mo5SiB2 (T2相)合金试样在真空条件和不同温度下的压缩行为和断裂行为,利用XRD, SEM-EDS和TEM等对试样变形后的微观组织、位错组态和断口形貌进行了分析和观察.结果表明, T2相的脆-韧转变温度为1000-1200℃.在外加切应力的作用下, [010](001)和<110>{110}等多个滑移系开始开动,导致试样发生明显的塑性变形. 由于刃型位错比螺型位错或混合型位错活跃,表现为[010]刃型位错深入到滑移面{110}, 与<110>位错发生交互作用,形成大量位错节点, 导致加工硬化. 随温度升高,试样断裂模式从单一解理断裂向穿晶解理-沿晶混合断裂转变,在1000℃时, 试样断口处能清晰地观察到滑移带.

关键词 Mo5SiB2 (T2相)压缩变形断裂位错组态脆-韧转变    
Abstract

The ordered intermetallic Mo5SiB2 (T2 phase) is a promising elevated-temperature structural material because of its high melting temperature, and excellent resistance to oxidation and creep. T2 phase has a body-centered tetragonal D81 structure (I4/mcm),with 20 Mo, 4 Si and 8 B atoms situating in layered arrangements along the c axis.This structure has been regarded as the obstacle to plastic deformation or dislocation activity especially at ambient temperature. However, like most intermetallic compounds, it undergoes a brittle-to-ductile transition (BDT) up to high temperatures, where the increased ductility is companied by microstructure changes. The feature of high-temperature applications makes it necessary to investigate the BDT behavior. The analysis of microstructure, dislocation configuration and fracture surfaces were carried out by compression and three-point bending tests, coupled with XRD, SEM-EDS and TEM methods. The result suggested that BDT happened over a wide temperature range of 1000-1200℃. At the BDT temperature above, multiple slip systems such as the [010](001) and <110>{110} could be activated under an applied stress, resulting in obvious plastic deformation. Since the edge dislocation displayed more activity than screw and mixed ones, the edge dislocation with b=[010] interacted with the <110>-type dislocation via slipping into its plane of {110}. Therefore, the work hardening was caused by the formation of lots of dislocation nodal points during the subsequent compression process. With temperature increasing, the fracture mode underwent a conversion from transgranular cleavage at ambient temperature to a mix of transgranular cleavage and intergranular failure.

Key wordsMo5SiB2 (T2 phase)    compressive deformation    fracture    dislocation configuration    brittle-to-ductile transition
收稿日期: 2013-07-15     
基金资助:

国家自然科学基金项目50871012和国家重点基础研究发展计划项目2011CB605502资助

作者简介: 潘昆明, 男, 1985年生, 博士生

[1] Ihara K, Ito K, Tanaka K, Yamaguchi M. Mater Sci Eng, 2002; A329-331: 222

[2] Lemberg J A, Ritchie R O. Adv Mater, 2012; 24: 3445
[3] Wang F, Shan A D, Dong X P, Wu J S. Trans Nonferrous Met Soc China, 2007; 17: 1242
[4] Alur A P, Chollacoop N, Kumar K S. Acta Mater, 2004; 52: 5571
[5] Hayashi T, Ito K, Ihara K, Fujikura M, Yamaguchi M. Intermetallics, 2004; 12: 699
[6] Zhang L Q, Pan K M, Lin J P. Intermetallics, 2013; 7: 49
[7] Brede M, Haasen P. Acta Mater, 1988; 35: 1735
[8] Roberts S G, Kim H S, Hirsch P B. Strength of Metals and Alloys. London: Freund House, 1991: 317
[9] Serbena F C, Roberts S G. Acta Metall Mater, 1994; 42: 2505
[10] Bergmann G, Vehoff H. Mater Sci Eng, 1995; A193: 309
[11] Booth A S, Roberts S G. Acta Mater, 1997; 45: 1045
[12] Ito K, Ihara K, Tanaka K, Fujikura M, Yamaguchi M, Intermetallics, 2001; 9: 591
[13] Sekido N, Sakidja R, Perepezko J H. Intermetallics, 2007; 15: 1268
[14] Meyer M K, Kramer M J, Akinca M. Intermetallics, 1996; 4: 273
[15] Pan K M, Zhang L Q, Wang J, Lin J P, Chen G L. Surf Interface Anal, 2013; 45: 955
[16] Zhang L Q, Pan K M, Wang J, Lin J P. Adv Powder Technol,
http://dx.doi.org/10.1016/j.apt.2013.01.003
[17] Shigeki N, Taeko A, Mitsuhiro S, Kazuo S. J Micromech Microeng, 2008; 18: 1
[18] Huang X Y. The Microstructure of Materials and its Electron Microcopy Analysis.
Beijing: Metallurgical Industry Press, 2008: 430
(黄孝瑛. 材料微观结构的电子显微学分析. 北京: 冶金工业出版, 2008: 430)
[19] Kenzaburo M. J Electron Microsc, 1991; 40: 229
[20] Field R D, Thoma D J, Cooley J C, Chua F, Fu C L, Yoo M H, Hults W L, Cady C M. Intermetallics, 2001; 9: 863
[21] Gregory R D, Wan F Y M. Int J Solid Struct, 1985; 10: 1005
[22] Zheng W W, Yang W Y, Sun Z Q. Acta Metall Sin, 2000; 36: 1161
(郑为为, 杨王玥, 孙祖庆. 金属学报, 2000; 36: 1161)
[23] Zheng W W, Yang W Y , Sun Z Q. Mater Sci Eng, 2001; A299: 46
[1] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[2] 吴进, 杨杰, 陈浩峰. 纳入残余应力时不同拘束下DMWJ的断裂行为[J]. 金属学报, 2022, 58(7): 956-964.
[3] 彭子超, 刘培元, 王旭青, 罗学军, 刘健, 邹金文. 不同服役条件下FGH96合金的蠕变特征[J]. 金属学报, 2022, 58(5): 673-682.
[4] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[5] 胡晨, 潘帅, 黄明欣. 高强高韧异质结构温轧TWIP[J]. 金属学报, 2022, 58(11): 1519-1526.
[6] 范国华, 缪克松, 李丹阳, 夏夷平, 吴昊. 从局域应力/应变视角理解异构金属材料的强韧化行为[J]. 金属学报, 2022, 58(11): 1427-1440.
[7] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[9] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[10] 杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
[11] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[12] 易红亮,常智渊,才贺龙,杜鹏举,杨达朋. 热冲压成形钢的强度与塑性及断裂应变[J]. 金属学报, 2020, 56(4): 429-443.
[13] 朱健, 张志豪, 谢建新. 基于原位TEM拉伸的稀土H13钢塑性形变行为和断裂机制[J]. 金属学报, 2020, 56(12): 1592-1604.
[14] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[15] 周丽,张鹏飞,王全兆,肖伯律,马宗义,于涛. B4C/6061Al复合材料热压缩断裂行为的多尺度研究[J]. 金属学报, 2019, 55(7): 911-918.