Please wait a minute...
金属学报  2012, Vol. 48 Issue (6): 744-748    DOI: 10.3724/SP.J.1037.2012.00032
  论文 本期目录 | 过刊浏览 |
Cu-Ni合金BTA复配体系钝化处理工艺研究
王艳秋1,邵亚薇1,孟国哲1,张涛1,王福会1,2
1. 哈尔滨工程大学材料科学与化学工程学院腐蚀与防护实验室, 哈尔滨 150001
2. 中国科学院金属研究所金属腐蚀与防护国家重点实验室, 沈阳 110016
STUDY ON PASSIVATING TREATMENT OF Cu-Ni ALLOY IN COMPOUND PASSIVANT CONTAINING BENZOTRIAZOLE
WANG Yanqiu1, SHAO Yawei1, MENG Guozhe1, ZHANG Tao1,WANG Fuhui1,2
1. Corrosion and Protection Laboratory, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016
引用本文:

王艳秋,邵亚薇,孟国哲,张涛,王福会. Cu-Ni合金BTA复配体系钝化处理工艺研究[J]. 金属学报, 2012, 48(6): 744-748.
, , , , . STUDY ON PASSIVATING TREATMENT OF Cu-Ni ALLOY IN COMPOUND PASSIVANT CONTAINING BENZOTRIAZOLE[J]. Acta Metall Sin, 2012, 48(6): 744-748.

全文: PDF(598 KB)  
摘要: 采用苯并三氮唑(BTA)复配钝化体系对B10 Cu--Ni合金进行钝化处理,以提高其在含硫化物环境介质中的耐腐蚀性能, 并研究工艺参数对钝化膜耐蚀性的影响规律. 利用动电位极化曲线和电化学阻抗谱研究钝化膜的耐腐蚀性能, 采用X射线光电子能谱分析钝化膜的化学成分.实验结果表明, 在BTA与磺基水杨酸组成的复配体系中形成的钝化膜比BTA单一体系中形成的钝化膜具有更高的耐蚀性, 这是磺基水杨酸与基体合金反应形成的络合物膜与Cu(I)BTA膜协同作用的结果; 钝化处理的时间和温度是影响钝化膜耐蚀性的重要工艺参数, 延长钝化时间和提高钝化温度均可以提高钝化膜的耐蚀性, 60 ℃高温条件下5 min的钝化处理即能够达到常温条件下3 h的钝化处理效果.
关键词 Cu-Ni合金钝化硫化物耐蚀性    
Abstract:Cu-Ni alloy has excellent corrosion resistance in marine environment and so it is widely used as seawater pipework in ships; however its corrosion resistance will decrease rapidly in sulphide--polluted seawater. Benzotriazole (BTA) is an excellent inhibitor for corrosion of copper and its alloys due to the formation of passivation film of Cu(I)BTA. In this work, passivation film was prepared on B10 Cu--Ni alloy in compound BTA passivant for improving its corrosion resistance against sulphide--polluted seawater. Corrosion resistance of the passivation films was studied by potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS); surface wettability of the films was characterized using contact angle test; X--ray photoelectron spectroscopy (XPS) was used to analyze the chemical compositions of the films. The results show that the passivation film prepared in compound passivant containing BTA and sulfosalicylic acid has better corrosion resistance than that in single BTA passivant; the higher corrosion resistance of the compound film results from synergetic effect of Cu(I)BTA and a complex compound which is a reaction product between sulfosalicylic acid and Cu alloy. Time and temperature of passivating treatment have important effects on corrosion resistance of the passivation film; prolonged treatment time and high treatment temperature are beneficial to improving corrosion resistance of the passivation film.
Key wordsCu-Ni alloy    passivation    sulphide    corrosion resistance
收稿日期: 2012-01-13     
ZTFLH: 

TG174.42

 
基金资助:

中央高校基本科研业务费专项资金项目HEUCFR1021和HEUCF20120001资助

作者简介: 王艳秋, 女, 1979年生, 讲师
[1] Zhang J, Wang Q, Wang Y M, Dong C.  Acta Metall Sin,2009; 45: 1390

    (张杰, 王清, 王英敏, 董闯. 金属学报, 2009; 45: 1390)

[2] Kear G, Barker B D, Stokes K, Walsh F C.  J Appl Electrochem,2004; 34: 659

[3] Stewart W C, LaQue F L.  Corrosion, 1952; 8: 259

[4] Macdonald D D, Syrett B C, Wing S S.  Corrosion, 1979; 35: 367

[5] Eiselstein L E, Syrett B C, Wing S S, Caligiuri R D.  Corros Sci,1983; 23: 223

[6] Syrett B C.  Corros Sci, 1985; 25: 1193

[7] Kharafi F M, Abdullah A M, Ghayad I M, Ateya B G.  Appl Surf Sci,2007; 253: 8986

[8] Syrett B C.  Corros Sci, 1981; 21: 187

[9] Wan Z Y, Zhang L, Yin R H, Xu Q J, Chen H, Zhu L J, Zhou G D. Acta Metall Sin, 2008; 44: 203

    (万宗跃, 张利, 印仁和, 徐群杰, 陈浩, 朱律均, 周国定. 金属学报, 2008; 44: 203)

[10] Kosec T, Milosev I, Pihlar B.  Appl Surf Sci, 2007; 253: 8863

[11] Kosec T, Merl D K, Milosev I.  Corros Sci, 2008; 50: 1987

[12] Qafsaoui W, Blanc C, Pebere N, Takenouti H, Srhiri A, Mankowski G. Electrochim Acta, 2002; 47: 4339

[13] Finsgar M, Milosev I.  Corros Sci, 2010; 52: 2737

[14] Finsgar M, Lesar A, Kokalj A, Milosev I. Electrochim Acta, 2008; 53: 8287

[15] Gopi D, Govindaraju K M, Collins Arun Prakash V, Angeline Sakila D M,Kavitha L.  Corros Sci, 2009; 51: 2259

[16] Khiati Z, Othman A A, Sanchez--Moreno M, Bernard M C, Joiret S,Sutter E M M, Vivier V.  Corros Sci, 2011; 53: 3092

[17] Antonijevic M M, Milic S M.  Mater Chem Phys, 2009; 118: 385

[18] Mansfeld F, Smith T.  Corrosion, 1973; 29: 105

[19] Mamas S, KIyak T, Kabasakaloglu M, Koc A.  Mater Chem Phys,2005; 93: 41

[20] Maciel M J, Jaimes R F V V, Corio P, Rubim J C, Volpe P L, Neto A A,Agostinho S M L.  Corros Sci, 2008; 50: 879

[21] Fox P G, Lewis G, Boden P J.  Corros Sci, 1979; 19: 457

[22] Poling G W.  Corros Sci, 1970; 10: 359

[23] Chen J H, Lin Z C, Chen S, Nie L H, Yao S Z.  Electrochim Acta,1998; 43: 265

[24] Antonijevic M M, Milic S M, Serbula S M, Bogdanovic G D. Electrochim Acta, 2005; 50: 3693

[25] Han W A, Zou F.  Acta Metall Sin, 1993; 29: B148

     (韩文安, 邹锋. 金属学报, 1993; 29: B148)
 
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[3] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[4] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.
[5] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[6] 吕晨曦, 孙阳庭, 陈斌, 蒋益明, 李劲. 恒电位脉冲技术对317L不锈钢点蚀行为及耐点蚀性能的影响[J]. 金属学报, 2021, 57(12): 1607-1613.
[7] 王雪梅, 殷正正, 于晓彤, 邹玉红, 曾荣昌. AZ31镁合金表面苯丙氨酸、甲硫氨酸和天冬酰胺诱导Ca-P涂层耐蚀性能比较[J]. 金属学报, 2021, 57(10): 1258-1271.
[8] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[9] 魏琳,王志军,吴庆峰,尚旭亮,李俊杰,王锦程. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7): 840-848.
[10] 李恺强, 杨璐嘉, 徐云泽, 王晓娜, 黄一. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响[J]. 金属学报, 2019, 55(4): 457-468.
[11] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[12] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[13] 杨海欧, 尚旭亮, 王理林, 王志军, 王锦程, 林鑫. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响[J]. 金属学报, 2018, 54(6): 905-910.
[14] 徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究[J]. 金属学报, 2018, 54(3): 443-456.
[15] 杨柯, 牛梦超, 田家龙, 王威. 新一代飞机起落架用马氏体时效不锈钢的研究[J]. 金属学报, 2018, 54(11): 1567-1585.