Please wait a minute...
金属学报  2012, Vol. 48 Issue (10): 1160-1165    DOI: 10.3724/SP.J.1037.2012.00364
  论文 本期目录 | 过刊浏览 |
DP1180双相钢在高应变速率变形条件下应变硬化行为及机制
代启锋1,宋仁伯1,范午言1,郭志飞1,2,关小霞1
1. 北京科技大学材料科学与工程学院, 北京 100083
2. 首钢技术研究院, 北京 100043
BEHAVIOUR AND MECHANISM OF STRAIN HARDENING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION
DAI Qifeng 1, SONG Renbo 1, FAN Wuyan 1, GUO Zhifei 1,2, GUAN Xiaoxia 1
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2. Shougang Research Institute of Technology, Beijing 100043
引用本文:

代启锋 宋仁伯 范午言 郭志飞 关小霞. DP1180双相钢在高应变速率变形条件下应变硬化行为及机制[J]. 金属学报, 2012, 48(10): 1160-1165.
DAI Qifeng SONG Renbo FAN Wuyan GUO Zhifei GUAN Xiaoxia. BEHAVIOUR AND MECHANISM OF STRAIN HARDENING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION[J]. Acta Metall Sin, 2012, 48(10): 1160-1165.

全文: PDF(1627 KB)  
摘要: 

利用电子万能试验机和分离式Hopkinson拉杆装置对DP1180冷轧双相钢分别进行应变速率为0.001 s-1和500, 1750 s-1的准静态和动态拉伸实验, 根据修正的Swift真应力--应变模型对实验数据进行了非线性拟合, 并用修正的Crussard--Jaoul分析法计算出修正的Swift模型的应变硬化指数. 结果表明: 在准静态和动态拉伸下, 都存在两阶段应变硬化特性, 第一阶段随应变速率的增加应变硬化能力增强; 第二阶段随应变速率的增加应变硬化能力减弱; 转折应变随应变速率的增加从3.12%减小到1.28%. 在高应变速率下, 马氏体附近的铁素体由于受到变形协调性的限制, 形成位错结构胞块, 其尺寸可达约90 nm, 而且几何必需边界(GNB)的存在使得DP1180双相钢在高应变速率下变形过程中不至于瞬间破坏; 在应变速率为1750 s-1时, 绝热温升Δ T=103 ℃使得马氏体更容易发生塑性变形.

关键词 双相钢 高应变速率 应变硬化 修正的Crussard--Jaoul分析法 几何必需边界    
Abstract

Strain hardening behaviour and mechanism of a cold–rolled dual phase steel DP1180 under quasi–static tensile condition at a strain rate of 0.001 s−1 by electronic universal testing machine, and dynamic tensile condition at strain rates of 500 and 1750 s−1 by split Hopkinson tensile bar (SHTB) apparatus were systematically studied. According to the modified Swift true strain–stress model, the experimental data was regressed by using nonlinear fitting method, and strain hardening exponent in the modified Swift model was calculated by a modified Crussard–Jaoul method. The results revealed that there are two stage strain hardening characteristics of DP1180 steel at the strain rate range of 0.001—1750 s−1, the strain hardening ability of the stage I was enhanced with increase of strain rate, while the strain hardening ability of the stage II was weakened, and the transition strain was decreased. The ferrite near the martensite regions formed cell blocks with dislocation structures, with a size of 90 nm, due to the limit of deformation compatibility,  and the existence of geometrically necessary boundary (GNB) made DP1180 steel not instantly damaged under deformation at high strain rates. In addition, the adiabatic temperature rise of ΔT=103  ℃ made martensite easy to have plastic deformation at a strain rate of 1750 s−1.

Key wordsdual phase steel    high strain rate    strain hardening    modified Crussard--Jaoul analysis    geometrically necessary boundary
收稿日期: 2012-06-20     
ZTFLH:  TG142. 41  
基金资助:

国家高技术研究发展计划项目2009AA03Z518和北京科技大学冶金工程研究院基础理论研究基金项目YJ2010--006资助

作者简介: 代启锋, 男, 1986年生, 博士生

[1] Chongthairungruang B, Uthaisangsuk V, Suranuntchai S, Jirathearanat S. Mater Des, 2012; 39: 318

[2] Giri S K, Bhattacharjee D. J Mater Eng Perform, 2012; 21: 988

[3] Pouranvari M. Mater Sci Eng, 2012; A546: 129

[4] Queiroz R R U, Cunha F G G, Gonzalez B M. Mater Sci Eng, 2012; A543: 84

[5] Ahmad E, Manzoor T, Ziai M M A, Hussain N. J Mater Eng Perform, 2012; 21: 382

[6] Nouri A, Saghafian H, Kheirandish S. Int J Mater Res, 2010; 101: 1286

[7] Calcagnotto M, Adachi Y, Ponge D, Raabe D. Acta Mater, 2011; 59: 658

[8] Sun X, Choi K S, Soulami A, Liu W N, Khaleel M A. Mater Sci Eng, 2009; A526: 140

[9] Huh H, Kang W J, Han S S. Exp Mech, 2002; 42(1): 8

[10] Deng Z J, Liu J, Wang H, Li P H. J Mater Therm Treat, 2011; 32: 111

(邓照军, 刘静, 王辉, 李平和. 材料热处理学报, 2011; 32: 111)

[11] Kamp A, Celotto S, Hanlon D N. Mater Sci Eng, 2012; A538: 35

[12] Colla V, De Sanctis M, Dimatteo A, Lovicu G, Solina A, Valentini R. Metall Mater Trans, 2009; 40A: 2557

[13] Sung J H, Kim J H, Wagoner R H. Int J Plast, 2010; 26: 1746

[14] Beynon N D, Jones T B, Fourlaris G. Mater Sci Technol, 2005; 21: 103

[15] Kuang S, Kang Y L, Yu H, Liu R D. J Mater Eng, 2009; (2): 11

(邝霜, 康永林, 于浩, 刘仁东. 材料工程, 2009; (2): 11)

[16] Ramos L F, Matlock D K, Krauss G. Metall Trans, 1979; 10A: 259

[17] Samuel F H. Mater Sci Eng, 1987; 92: L1

[18] Jha B K, Avtar R, Dwivedi V S, Ramaswamy V. J Mater Sci Lett, 1987; 6: 891

[19] Swift H W. J Mech Phys Solids, 1952; (1): 1

[20] Das D, Chattopadhyay P P. J Mater Sci, 2009; 44: 2957

[21] Yu Y N. Fundamentals of Materials Science. Beijing: High Education Press, 2006: 566

(余永宁. 材料科学基础. 北京: 高等教育出版社, 2006: 566)

[22] Winther G, Jensen D J, Hansen N. Acta Mater, 1997; 45: 5059

[23] Sha G Y, Sun X G, Liu T, Zhu Y H, Feng X G. Chin J Mater Res, 2010; 24: 567

(沙桂英, 孙晓光, 刘腾, 朱宇宏, 冯晓刚. 材料研究学报, 2010; 24: 567)

[24] Hughes D A, Hansen N, Bammann D J. Scr Mater, 2003; 48: 147

[25] Wu Z Q, Tang Z Y, Li H Y, Zhang H D. Acta Metall Sin, 2012; 48: 593

(吴志强, 唐正友, 李华英, 张海东. 金属学报, 2012; 48: 593)

[26] Wu C C, Wang S H, Chen C Y, Yang J R, Chiu P K, Fang J. Scr Mater, 2007; 56: 717

[1] 赵亚峰, 刘苏杰, 陈云, 马会, 马广财, 郭翼. 铁素体-贝氏体双相钢韧性断裂过程中的夹杂物临界尺寸及孔洞生长[J]. 金属学报, 2023, 59(5): 611-622.
[2] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[3] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[4] 储双杰, 毛博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566.
[5] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[6] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[7] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[9] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[10] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[11] 陈瑞, 许庆彦, 郭会廷, 夏志远, 吴勤芳, 柳百成. Al-7Si-Mg铝合金拉伸过程应变硬化行为及力学性能模拟研究[J]. 金属学报, 2017, 53(9): 1110-1124.
[12] 杨蕊,潘艳,陈威,孙巧艳,肖林,孙军. 微尺度Ti-10V-2Fe-3Al单晶压缩变形行为及其微观机制*[J]. 金属学报, 2016, 52(2): 135-142.
[13] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[14] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[15] 郭鹏程, 钱立和, 孟江英, 张福成. 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为*[J]. 金属学报, 2014, 50(4): 415-422.