Please wait a minute...
金属学报  2012, Vol. 48 Issue (10): 1153-1159    DOI: 10.3724/SP.J.1037.2012.00221
  论文 本期目录 | 过刊浏览 |
高Si奥氏体高Mn钢加工硬化行为及机制的研究
文玉华, 张万虎, 司海涛, 熊仁龙, 彭华备
四川大学制造科学与工程学院, 成都 610065
STUDY ON WORK HARDENING BEHAVIOUR AND MECHANISM OF HIGH SILICON AUSTENITIC HIGH MANGANESE STEEL
WEN Yuhua, ZHANG Wanhu, SI Haitao, XIONG Renlong, PENG Huabei
College of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065
引用本文:

文玉华 张万虎 司海涛 熊仁龙 彭华备. 高Si奥氏体高Mn钢加工硬化行为及机制的研究[J]. 金属学报, 2012, 48(10): 1153-1159.
WEN Yuhua ZHANG Wanhu SI Haitao XIONG Renlong PENG Huabei. STUDY ON WORK HARDENING BEHAVIOUR AND MECHANISM OF HIGH SILICON AUSTENITIC HIGH MANGANESE STEEL[J]. Acta Metall Sin, 2012, 48(10): 1153-1159.

全文: PDF(1477 KB)  
摘要: 

设计了一种低应力下容易发生ε马氏体转变的Fe-17Mn-6Si-0.3C高Si高Mn钢. 采用OM, XRD和TEM研究了高Si高Mn钢和传统高Mn钢在静态拉伸和动态冲击时的力学性能及组织演化. 结果表明: 静态拉伸下高Si高Mn钢比传统高Mn钢具有更高的加工硬化速率; 动态冲击下高Si高Mn钢的表面硬度高于传统高Mn钢, 而冲击变形量却显著低于传统高Mn钢.高Si高Mn钢变形时应力诱发ε马氏体转变的优先发生是导致上述结果的原因. 这个结果间接证实了传统高Mn钢的异常加工硬化能力来源于形变孪晶的形成及其因C原子存在导致的严重晶格畸变.

关键词 高Mn钢 加工硬化能力 高Si高Mn钢 形变孪晶 应力诱发马氏体转变    
Abstract

There exist poor work hardening capacity under medium or low stress condition in conventional Hadfield steels. This poor work hardening capacity together with their low yield strength result in a serious plastic deformation in initial service. To address these two problems, a mechanism had been put forward to explain the unusual work hardening ability of conventional Hadfield steel under heavy stress or high load impact. The formation of deformation twins and its concomitant serious lattice distortion is responsible for their unusual work hardening ability due to the existence of interstitial C atoms. Based on the fact that the same effect can be produced after the formation of stress–induced " martensitic transformation, a high silicon high manganese steel Fe–17Mn–6Si–0.3C was designed. In this alloy the stress–induced " martensitic transformation easily took place under low stress. The mechanical properties and microstructure evolution of the high silicon high manganese steel and a conventional Hadfield steel were studied by OM, XRD and TEM under both static tension and dynamic impact loads. The results showed that under the tension load the high silicon high manganese steel had higher strain hardening rate than the conventional Hadfield steel. Under dynamic impact load the high silicon high manganese steel had lower impact deformation but higher surface hardness than the conventional Hadfield steel. The preferential occurrence of stress–induced " martensitic transformation accounted for this difference. This result also indirectly confirmed that the formation of deformation twins and its concomitant serious lattice distortion due to the existence of interstitial C atoms led to the unusual work hardening ability of conventional Hadfield steel.

Key wordsHadfield steel    work hardening capacity    high silicon high manganese steel deformation twin    stress–induced martensitic  transformation
收稿日期: 2012-04-23     
ZTFLH:  TG135.6  
基金资助:

国家自然科学基金项目50971095及四川省青年基金项目2010A01--436资助

作者简介: 文玉华, 男, 1971年生, 教授

[1] Roberts W N. Trans Metall Soc AIME, 1964; 230: 372

[2] Dastur Y N, Leslie W C. Metall Trans, 1981; 12A: 749

[3] Srivastava A K, Das K. J Mater Sci, 2008; 43: 5654

[4] Xie J P, Wang W Y, Li J W, Wang A Q, Zhao Y R, Li L L. Wear–Resistant Austenitic Manganese Steel. Beijing: Science Press, 2008: 147

(谢敬佩, 王文焱, 李继文, 王爱琴, 赵永让, 李洛利. 耐磨奥氏体锰钢. 北京: 科学出版社, 2008: 147)

[5] Jost N, Schmidt I. Wear, 1986; 111: 377

[6] Spreadborough J. Acta Cryst, 1960; 13: 603

[7] White C H, Honeycombe R W K. J Iron Steel Inst, 1962; 200: 457

[8] Adler P H, Olson G B, Owen W S. Metall Trans, 1986; 17A: 1725

[9] Owen W S, Grujicic M. Acta Mater, 1999; 47: 111

[10] Shi D K, Liu J H. Acta Metall Sin, 1989; 25: 282

(石德珂, 刘军海. 金属学报, 1989; 25: 282)

[11] Zhu R F, Li S T, Liu Y X, Wang S Q. Sci China, 1997; 27E: 193

(朱瑞富, 李士同, 刘玉先, 王世清. 中国科学, 1997; 27E: 193)

[12] Xu Y H, Chen Y M, Xiong J L, Zhu J H. Acta Metall Sin, 2001; 37: 165

(许云华, 陈渝眉, 熊建龙, 朱金华. 金属学报, 2001; 37: 165)

[13] Remy L, Pineau A. Mater Sci Eng, 1977; 28: 99

[14] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387–389: 158

[15] Bracke L, Mertens G, Penning J, Decooman B C, Liebeherr M, Akdut N. Metall Mater Trans, 2006; 37A: 307

[16] Charles J, Bergh´ezan A, Lutts A. J Phys, 1982; 43: C4–435

[17] Tian X. Mater Sci Prog, 1993; 3: 215

(田兴. 材料科学进展, 1993; 3: 215)

[18] Brofman P J, Ansell G S. Metall Trans, 1978; 9A: 879

[19] Zhang W, Wu J, Wen Y, Ye J, Li N. J Mater Sci, 2010; 45: 3433

[20] Efstathiou C, Sehitoglu H. Acta Mater, 2010; 58: 1479

[21] Liang X, McDermid J R, Bouaziz O, Wang X, Embury  J D, Zurob H S. Acta Mater, 2009; 57: 3978

[22] Mecking H, Kocks U F. Acta Metall, 1981; 29: 1865

[23] Hutchinson B, Ridley N. Scr Mater, 2006; 55: 299

[24] Remy L. Acta Metall, 1978; 26: 443

[1] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[2] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.
[3] 高钰璧, 丁雨田, 陈建军, 许佳玉, 马元俊, 张东. 挤压态GH3625合金冷变形过程中的组织和织构演变[J]. 金属学报, 2019, 55(4): 547-554.
[4] 周博, 隋曼龄. AZ31镁合金拉伸扭折带结构的产生及交互作用机制[J]. 金属学报, 2019, 55(12): 1512-1518.
[5] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[6] 单智伟, 刘博宇. Mg的{101̅2}形变孪晶机制*[J]. 金属学报, 2016, 52(10): 1267-1278.
[7] 张新宁,曲迎东,李荣德,尤俊华. 铁素体球墨铸铁低温冲击断裂裂纹形核及扩展机理*[J]. 金属学报, 2015, 51(11): 1333-1340.
[8] 郭鹏程, 钱立和, 孟江英, 张福成. 高锰奥氏体TWIP钢的单向拉伸与拉压循环变形行为*[J]. 金属学报, 2014, 50(4): 415-422.
[9] 张志波 刘振宇 张维娜. VC沉淀粒子对TWIP钢加工硬化行为的影响[J]. 金属学报, 2012, 48(9): 1067-1073.
[10] 吴志强,唐正友,李华英,张海东. 应变速率对低C高Mn TRIP/TWIP钢组织演变和力学行为的影响[J]. 金属学报, 2012, 48(5): 593-600.
[11] 秦小梅 陈礼清 邸洪双 邓伟. 变形温度对Fe-23Mn-2Al-0.2C TWIP钢变形机制的影响[J]. 金属学报, 2011, 47(9): 1117-1122.
[12] 李激光 丁亚杰 彭兴东 刘津伟. 水淬工艺对TWIP钢显微组织和力学性能的影响[J]. 金属学报, 2010, 46(2): 221-226.
[13] 张维娜 刘振宇 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为[J]. 金属学报, 2010, 46(10): 1230-1236.
[14] 王书晗 刘振宇 张维娜 王国栋. TWIP钢不同温度变形的力学性能变化规律及机理研究[J]. 金属学报, 2009, 45(5): 573-578.
[15] 黄文克 孔凡亚. 冷拔高强00Cr18Ni10N不锈钢丝显微组织与力学性能[J]. 金属学报, 2009, 45(3): 275-279.