Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 1038-1045    DOI: 10.3724/SP.J.1037.2011.00093
  论文 本期目录 | 过刊浏览 |
渗碳20CrMnMoAl钢表面硬贝氏体的制备及其组织特征
张朋,张福成,王天生
燕山大学亚稳材料制备技术与科学国家重点实验室, 秦皇岛 066004
PREPARATION AND MICROSTRUCTURE OF HARD BAINITE IN SURFACE LAYER OF CARBURIZED 20CrMnMoAl STEEL
ZHANG Peng, ZHANG Fucheng, WANG Tiansheng
State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004
引用本文:

张朋 张福成 王天生. 渗碳20CrMnMoAl钢表面硬贝氏体的制备及其组织特征[J]. 金属学报, 2011, 47(8): 1038-1045.
, , . PREPARATION AND MICROSTRUCTURE OF HARD BAINITE IN SURFACE LAYER OF CARBURIZED 20CrMnMoAl STEEL[J]. Acta Metall Sin, 2011, 47(8): 1038-1045.

全文: PDF(1071 KB)  
摘要: 在渗碳20CrMnMoAl钢表面通过热处理获得了硬贝氏体组织, 对其组织结构特征进行了研究. 首先, 利用自行设计的滴注式可控气氛全自动渗碳炉, 在930℃对20CrMnMoAl钢渗碳处理8 h, 使钢表面的C含量达到0.81%(质量分数). 将经过渗碳处理的试样在930℃保温20 min进行奥氏体化处理, 然后淬入温度分别为220, 250和300℃的盐浴中, 并分别保温0.5-50 h后空冷.利用OM, TEM, XRD及显微硬度计对热处理后渗碳层的组织和性能进行分析研究. 结果表明,该钢经过220和250℃保温一定时间后, 试样表层为超细硬贝氏体, 由平均尺寸为70-100 nm的贝氏体层片和分布于片间平均厚度为几纳米到几十纳米的残余奥氏体膜组成,试样表面硬度达到630 HV; 试样心部是低碳板条马氏体; 过渡层是硬贝氏体和低碳马氏体的混合组织.
关键词 硬贝氏体渗碳 等温淬火 低碳钢    
Abstract:A new technology was developed based on carburization and succedent low–temperature austempering to produce hard bainitic microstructure in the surface layer of low–carbon steel 20CrMnMoAl. The microstructure and property of the hard bainite were investigated. The samples were carburized in a gas carburizing furnace at 930 ℃ for 8 h. The carbon content in the surface layer increased to 0.81%(mass fraction) after carburization. The carbonized samples were heated at 930℃ for austenitization and then isothermally quenched at different temperatures in salt bath. The microstructures were investigated by OM, TEM and XRD, and the hardness was tested by HV–sclerometer. The results show that for the samples which were isothermally quenched at 220 and 250℃, ultrafine hard bainite was obtained in the surface layer with a hardness of 630 HV. The plate of ultrafine bainitic ferrite was as thin as 70 nm and film of retained austenite had a thickness of several nanometers. Low carbon lath martensite was obtained in the center and mixstructures of the ultrafine bainite and low carbon martensite in the transition layer.
Key wordshard bainite    carbonization    austempering    low carbon steel
收稿日期: 2011-02-25     
基金资助:

国家杰出青年科学基金项目50925522, 国家自然科学基金项目50871094和50821001及河北省杰出青年基金项目E2009001632资助

作者简介: 张朋, 男, 1981年生, 博士生
[1] Garcia M C, Caballero F G, Bhadeshia H K D H. ISIJ Int, 2003; 43: 1238

[2] Caballero F G, Bhadeshia H K D H. Curr Opin Solid State Mater Sci, 2004; 8: 251

[3] Caballero F G, Bhadeshia H K D H, Mawella K J A, Jones D G, Brown P. Mater Sci Technol, 2002; 18: 279

[4] Kim H K, Choi M I, Chung C S, Shin D H. Mater Sci Eng, 2003; A340: 243

[5] Chapetti M D, Miyata H, Tagawa T, Miyata T, Fujioka M. Int J Fatigue, 2005; 27: 235

[6] Qian Y P, He Q F, Yan G C. Locomotive Roll Stock Technol, 2001; (4): 1

(钱云鹏, 何庆复, 阎国臣. 机车车辆工艺, 2001; (4): 1)

[7] Ritchie R, Cedeno M H C, Zackay V F, Parker E R. Metall Mater Trans, 1978; 9A: 35

[8] Wang T S, Yang J, Shang C J, Li X Y, L¨u B, Zhang M, Zhang F C. Surf Coat Technol, 2008; 202: 4036

[9] Garcia M C, Caballero F G, Bhadeshia H K D H. ISIJ Int, 2003; 43: 1821

[10] Andrews K W. J Iron Steel Inst, 1965; 203: 721

[11] Bhadeshia H K D H, Honeycombe S R. Steels, 3rd Ed. Oxford: Elsevier Ltd, 2006: 129

[12] Bhadeshia H K D H. Mater Sci Technol, 2005; 21: 1293

[13] Fang H S, Wang J J, Yang Z G, Li C M, Bo X Z, Zheng Y K. Bainite Transformation. Beijing: Science Press, 1999: 149

(方鸿生, 王家军, 杨志刚, 李春明, 薄祥正, 郑燕康. 贝氏体相变, 北京: 科学出版社, 1999: 149)

[14] De A K, Murdock D C, Mataya M C, Speer J G, Matlock D K. Scr Mater, 2004; 50: 1445

[15] Bhadeshia H K D H. Bainite in Steels, 2nd Ed. London: The Institute of Materials, 2001: 373

[16] Caballero F G, Miller M K, Babu S S, Garcia M C. Acta Mater, 2007; 55: 381

[17] Bhadeshia H K D H. Materials Algorithms Project, http://www.msm.cam.ac.uk/map/steel/programs/mucg83.html

[18] Jr Caskey G R. Mater Sci Eng, 1972; 10: 357
[1] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[2] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[3] 肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
[4] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[5] 冯汉臣,闵学刚,魏大圣,周立初,崔世云,方峰. 低温回火对超大形变冷拔珠光体钢丝显微组织和力学性能的影响[J]. 金属学报, 2019, 55(5): 585-592.
[6] 徐文胜, 张文征. 先共析渗碳体上形核的珠光体晶体学研究[J]. 金属学报, 2019, 55(4): 496-510.
[7] 武慧东, 宫本吾郎, 杨志刚, 张弛, 陈浩, 古原忠. Fe-1.5(3.0)%Si-0.4%C合金贝氏体不完全转变现象及伴随的渗碳体析出[J]. 金属学报, 2018, 54(3): 367-376.
[8] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[9] 崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.
[10] 薛滢妤, 唐建成, 卓海鸥, 叶楠, 吴桐, 周旭升. 渗碳体石墨化制备无铅易切削石墨黄铜的组织及性能*[J]. 金属学报, 2015, 51(2): 223-229.
[11] 荣冬松,姜勇,巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究*[J]. 金属学报, 2015, 51(12): 1516-1522.
[12] 彭亚伟,巩建鸣,荣冬松,姜勇,付明辉,余果. 316L奥氏体不锈钢低温表面渗碳的数值分析*[J]. 金属学报, 2015, 51(12): 1500-1506.
[13] 彭以超, 张麦仓, 杜晨阳, 董建新. 服役态Cr35Ni45Nb合金高温真空渗碳行为及相演化机理研究[J]. 金属学报, 2015, 51(1): 11-20.
[14] 王斌, 刘振宇, 冯洁, 周晓光, 王国栋. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*[J]. 金属学报, 2014, 50(6): 652-658.
[15] 王艳飞, 巩建鸣, 荣冬松, 高峰. 不锈钢低温气体渗碳的C浓度与扩散应力测量与计算*[J]. 金属学报, 2014, 50(4): 409-414.