Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1516-1522    DOI: 10.11900/0412.1961.2015.00170
  本期目录 | 过刊浏览 |
奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究*
荣冬松,姜勇,巩建鸣()
南京工业大学机械与动力工程学院, 南京 211816
EXPERIMENTAL RESEARCH AND THERMODYNAMIC SIMULATION OF LOW TEMPERATURE COLOSSAL CARBURIZATION OF AUSTENITIC STAINLESS STEEL
Dongsong RONG,Yong JIANG,Jianming GONG()
College of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816
引用本文:

荣冬松,姜勇,巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究*[J]. 金属学报, 2015, 51(12): 1516-1522.
Dongsong RONG, Yong JIANG, Jianming GONG. EXPERIMENTAL RESEARCH AND THERMODYNAMIC SIMULATION OF LOW TEMPERATURE COLOSSAL CARBURIZATION OF AUSTENITIC STAINLESS STEEL[J]. Acta Metall Sin, 2015, 51(12): 1516-1522.

全文: PDF(757 KB)   HTML
  
摘要: 

采用OM, EPMA, XRD和IXRD等手段, 研究了低温超饱和渗碳(low temperature colossal carburization, LTCC)工艺中CO气体浓度对316L 不锈钢表面渗碳层的微观组织、C浓度分布、表面相结构以及残余应力的影响. 基于热动力学理论建立了LTCC传质和扩散模型, 利用DICTRA软件计算了渗碳层的C浓度和活度分布, 并与实验结果进行比较. 结果表明, 经LTCC工艺处理后的316L 不锈钢表面会形成高硬度的S相, 并产生压缩残余应力. 另外, 增加渗碳工艺中CO 浓度可以显著提高不锈钢表面渗碳层中的C浓度, 进而提高其硬度和压缩残余应力. 在C浓度较低时, 计算的C浓度和活度分布与实验结果吻合很好, 当C浓度较高时, 由于陷阱阵点的减少以及较大压缩残余应力的作用导致计算结果偏低.

关键词 低温超饱和渗碳奥氏体不锈钢DICTRAC浓度活度    
Abstract

Because of excellent corrosion resistance, good toughness and machinability, austenitic stainless steels are widely used in many industries. In order to improve the corrosion resistance, the carbon content of austenitic stainless steel is ultra-low, resulting in low surface hardness, poor wear and fatigue resistance properties which limit its application. Low temperature colossal carburization (LTCC) is a kind of novel surface strengthening technology for significantly increasing the surface hardness of austenitic stainless steels, while keeping their original excellent corrosion resistance because of no formation of carbides. The wear, fatigue and corrosion resistance of austenitic stainless steel of low temperature carburized layer have been investigated in recent years. However, the researches on key technical parameters, especially the carburizing atmosphere and the alloying element, have been rarely reported due to intellectual property protection limits. In this work, OM, EPMA, XRD and IXRD are used to investigate the effects of CO concentration on the microstructure, carbon concentration distribution, phase constitution and residual stress of the carburized layer on 316L austenitic stainless steel surface. Based on thermodynamic theory, the model of carbon transfer and diffusion was also built by software DICTRA to calculate the distribution of carbon concentration and activity of low temperature carburized layer. The results reveal that S phase is detected on 316L austenitic stainless steel surface treated by LTCC, and the compressive residual stress is formed at the same time. The increment of CO concentration can significantly increase the carbon concentration of carburized layer, which improve the hardness and compressive residual stress. The simulated carbon concentration and activity distributions are in accordance with the experimental results when the carbon concentration is lower, but when the carbon concentration is higher, the simulated carbon concentration is lower than experimental results due to the decrease of trapping sites and high compressive residual stress.

Key wordslow temperature colossal carburization    austenitic stainless steel    DICTRA    carbon concentration    activity
    
基金资助:*国家自然科学基金项目51475224, 江苏省高校自然科学研究重大项目14KJA470002 和江苏省普通高校研究生创新计划项目CXZZ12_0420资助
图1  奥氏体不锈钢低温超饱和渗碳(LTCC)工艺示意图
图2  经不同CO浓度的渗碳气体LTCC处理后316L不锈钢截面的OM像
图3  C浓度分布测量和模拟曲线
图4  316L不锈钢基体和S3试样表面XRD谱
图5  渗碳层残余应力和C浓度关系
图6  奥氏体不锈钢LTCC模型几何示意图
图7  743 K时316L不锈钢C浓度与活度关系曲线
图8  S1, S2和S3试样C活度分布计算曲线
图9  S1, S2和S3试样表面C浓度测量值和模拟曲线
[1] Bowen A W, Leak G M. Metall Trans, 1970; 1: 2767
[2] Bell T, Sun Y. Heat Treat Met, 2002; 29: 57
[3] Qu J, Blau P J, Jolly B C. Wear, 2007; 263: 719
[4] Ceschini L, Minak G. Surf Coat Technol, 2008; 202: 1778
[5] Tokaji K, Kohyama K, Akita M. Int J Fatigue, 2004; 26: 543
[6] Li P, Pan L, Zhang L J, Yang M H, Zhu Y F, Ma F. China Surf Eng, 2013; 26(2): 26
[6] (李 朋, 潘 邻, 张良界, 杨闽红, 朱云峰, 马 飞. 中国表面工程, 2013; 26(2): 26)
[7] Li P, Pan L, Zhang L J, Yang M H, Zhu Y F, Ma F, Wang C H. Surf Technol, 2013; 42(4): 18
[7] (李 朋, 潘 邻, 张良界, 杨闽红, 朱云峰, 马 飞, 王成虎. 表面技术, 2013; 42(4): 18)
[8] Yang M H, Li P, Pan L, Zhang L J, Dong G C. Mater Prot, 2012; 45(7): 60
[8] (杨闽红, 李 朋, 潘 邻, 张良界, 董根成. 材料保护, 2012; 45(7): 60)
[9] Yu Y N. Fundamentals of Materials Science. Beijing: Higher Education Press, 2006: 466
[9] (余永宁. 材料科学基础. 北京: 高等教育出版社, 2006: 466)
[10] Andersson J O, Helander T, H?glund L, Shi P, Sundman B. Calphad, 2002; 26: 273
[11] Sudha C, Sivai Bharasi N, Anand R, Shaikh H, Dayal R K, Vijayalakshmi M. J Nucl Mater, 2010; 402: 186
[12] Turpin T, Dulcy J, Gantois M. Metall Mater Trans, 2005; 36A: 2751
[13] Rowan O K, Sisson Jr R D. J Phase Equilib Diff, 2009; 30: 235
[14] Garcia J, Prat O. Appl Surf Sci, 2011; 257: 8894
[15] H?glund L, ?gren J. J Phase Equilib Diff, 2010; 31: 212
[16] Okafor I C I, Carlson O N, Martin D. Metall Trans, 1982; 13A: 1713
[17] Tahara M, Senbokuya H, Kitano K, Hayashida T. Eur Pat, 0678589A1, 1995
[18] Rong D S, Gong J M, Jiang Y, Geng L Y. China Pat, 103323355A, 2013
[18] (荣冬松, 巩建鸣, 姜 勇, 耿鲁阳. 中国专利, 103323355A, 2013)
[19] Michal G M, Ernst F, Heuer A H. Metall Mater Trans, 2006; 37A: 1819
[20] Zhoukov A A, Krishtal M A. Met Sci Heat Treat, 1975; 17: 626
[21] Lei N, Zhou C Y, Hu G M, Chen C. Iron Steel Res, 2010; 22(1): 43
[21] (雷 娜, 周昌玉, 胡桂明, 陈 成. 钢铁研究学报, 2010; 22(1): 43)
[22] Lin H L. Master Thesis, Shanghai Jiao Tong University, 2007
[22] (梁海林. 上海交通大学硕士学位论文, 2007)
[23] Gao W, Long J M, Kong L, Hodgson P D. ISIJ Int, 2004; 44: 869
[24] Edenhofer B. Heat Treat Met, 1995; 22(3): 55
[25] Gupta G S, Chaudhuri A, Kumar P V. Mater Sci Technol, 2002; 18: 1188
[26] Gao W M, Kong L X, John M L, Hodgson P D. J Mater Process Technol, 2009; 209: 497
[27] Gu X T, Michal G M, Ernst F, Kahn H, Heuer A H. Metall Mater Trans, 2014; 45A: 4268
[28] ?gren J. Curr Opin Solid State Mater, 1996; 1: 355
[29] J?nsson B. Int J Mater Res, 1994; 85: 498
[30] Yang F. Mater?Sci Eng,?2005; A409: 153
[31] Parascandola S, M?ller W, Williamson D L. Appl Phys Lett, 2000; 76: 2194
[32] M?ller W, Parascandola S, Kruse O, Günzel R, Richter E. Surf Coat Technol, 1999; 116: 1
[33] Scheuer C J, Cardoso R P, Zanetti F I, Amaral T, Brunatto S F. Surf Coat Technol, 2012; 206: 5085
[34] Ge Y, Ernst F, Kahn H, Heuer A H. Metall Mater Trans, 2014; 45B: 2338
[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 居天华, 舒念, 何维, 丁学勇. 合金溶液中溶质间活度相互作用系数预测模型[J]. 金属学报, 2023, 59(11): 1533-1540.
[4] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[5] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[6] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[7] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[8] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[9] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[10] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[11] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[12] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
[13] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[14] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[15] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.