Please wait a minute...
金属学报  2014, Vol. 50 Issue (4): 409-414    DOI: 10.3724/SP.J.1037.2013.00537
  本期目录 | 过刊浏览 |
不锈钢低温气体渗碳的C浓度与扩散应力测量与计算*
王艳飞, 巩建鸣(), 荣冬松, 高峰
南京工业大学机械与动力工程学院, 南京 211816
MEASUREMENT AND CALCULATION OF CARBON CONCENTRATION AND DIFFUSION-INDUCED STRESS IN STAINLESS STEEL AFTER LOW TEMPERATURE GAS CARBURIZING
WANG Yanfei, GONG Jianming(), RONG Dongsong, GAO Feng
College of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 211816
引用本文:

王艳飞, 巩建鸣, 荣冬松, 高峰. 不锈钢低温气体渗碳的C浓度与扩散应力测量与计算*[J]. 金属学报, 2014, 50(4): 409-414.
Yanfei WANG, Jianming GONG, Dongsong RONG, Feng GAO. MEASUREMENT AND CALCULATION OF CARBON CONCENTRATION AND DIFFUSION-INDUCED STRESS IN STAINLESS STEEL AFTER LOW TEMPERATURE GAS CARBURIZING[J]. Acta Metall Sin, 2014, 50(4): 409-414.

全文: PDF(844 KB)   HTML
摘要: 

开展316L奥氏体不锈钢块状试样低温气体渗碳实验, 测量渗碳层内沿深度方向的C浓度和应力的大小及分布; 基于应力-扩散耦合作用理论, 建立渗碳后渗碳层内的C浓度和应力分布的计算模型, 利用该模型计算上述渗碳实验后试样沿深度方向的C浓度和应力分布, 并将模型计算结果和实验结果进行比较. 结果表明, 低温气体渗碳后钢在表层产生一层含高C浓度的渗碳层, 渗碳层内重现高的压应力, C浓度和压应力均在表面处最大, 随着深度的增加而逐渐降低, 压力和浓度的大小之间呈直线关系; 考虑应力-扩散的耦合作用的扩散计算模型计算得到的C浓度分布和实验测量结果符合的较好, 表明扩散引起的应力在低温气体渗碳的C扩散中扮演重要角色; 扩散压应力的产生显著增加了C的表观扩散速度, 在低温气体渗碳等类似的渗碳或氮的扩散机制研究中, 需考虑扩散引起的扩散压应力与扩散之间的相互作用关系.

关键词 低温气体渗碳316L奥氏体不锈钢C浓度扩散应力    
Abstract

Low temperature gas carburizing has been established as a surface hardening process to improve the wear and fatigue resistance of austenitic stainless steel. In the gas carburizing treatment of stainless steel at low temperature, carbon diffuses into the steel to a depth up to dozens of or even hundreds of micrometers. In industrial practice, it would be useful to establish a model that can predict the carburizing depth from carburizing condition. However, to date a satisfactory model does not exist, and the classic Fick's law has been proved to be inaccurate to describe the carbon diffusion during carburation. It has been observed that the insertion of carbon can lead to the evolution of very high compressive stresses in the surface layer of stainless steel. Since it has well established that the stresses induced by diffusion of atoms can in turn affect the diffusion behavior, the high compressive stresses due to carbon diffusion during carburation are supposed to play a role in the further diffusion of carbon. In this work, 316L stainless steel block specimens were gas carburized at low temperature, and the carbon concentration, diffusion-induced stress along the depth direction of specimens were measured. Based on the coupled stress-diffusion theory, a model was built to calculate the carbon concentration and diffusion-induced stress in the specimens after carburizing. Then the calculated carbon concentration and stress distribution were compared to that obtained by above measurement. The results show as follow: (1) After carburizing, a diffusion layer containing high amounts of carbon and compressive stress was formed near the surface of specimens. The concentration and compressive stress were the maximum at the surface, and decreased with increasing depth. There was a linear relationship between the stress and carbon concentration. With increasing carburizing time, the depth and concentration level of the carbon diffusion layer increased. (2) To describe the carbon diffusion during carburation of stainless steel at low temperature, the model based on coupled stress-diffusion theory is more appropriate than the classical Fick's second law. The diffusion-induced compressive stress played an important role in diffusion of carbon. (3) The compressive stress highly increased the apparent diffusion rate of carbon. This explained the phenomenon that measured diffusion depth of carbon is much higher than that excepted from Fick's law. The interaction between diffusion and diffusion-induced stress should be considered when studying diffusion mechanism of carbon or nitride in carburizing or nitriding similar to the gas carburizing at low temperature.

Key wordslow temperature gas carburizing    316L austenitic stainless steel    carbon concentration    diffusion-induced stress
收稿日期: 2013-08-30     
ZTFLH:  TG156  
基金资助:* 江苏省普通高校研究生创新计划资助项目CXZZ12_0420
作者简介: null

王艳飞, 男, 1986年生, 博士生

图1  
图2  
图3  
图 4  
[1] Christiansen T, Somers M A J. Surf Eng, 2005; 21: 445
[2] Lo K H, Zeng D. Recent Pat Mech Eng, 2010; 3: 11
[3] Larisch B, Brusky U, Spies H J. Surf Coat Technol, 1999; 116-119: 205
[4] Michal G, Ernst F, Kahn H, Cao Y, Oba F, Agarwal N, Heuer A H. Acta Mater, 2006; 54: 1597
[5] Agarwal N, Kahn H, Avishai A, Michal G, Ernst F, Heuer A H. Acta Mater, 2007; 55: 5572
[6] Wang J, Xiong J, Peng Q, Fan H, Wang Y, Li G, Shen B. Mater Charact, 2009; 60: 197
[7] Wang M,Gong J M,Rong D S. Press Vessel Technol, 2012; 29(6): 45
[7] (王 萌, 巩建鸣, 荣冬松. 压力容器, 2012; 29(6): 45)
[8] Cao Y, Ernst F, Michal G M. Acta Mater, 2003; 51: 4171
[9] Williams P. US Pat, 6547888, 2003
[10] Rey O, Jacquot P. Surf Eng, 2002; 18: 412
[11] Aoki K. Surf Finish Soc Jpn, 2003; 54: 209
[12] Karabelchtchikova O, Sisson R D. J Phase Equilib Diff, 2006; 27: 598
[13] Wang S X,Liu Y. Practical Simulation of Heat Treatment Technology. Beijing: Mechanical Industry Press, 2002: 256
[13] (王顺兴,刘 勇. 实用热处理模拟技术. 北京: 机械工业出版社, 2002: 256)
[14] Ernst F, Avishai A, Kahn H, Gu X, Michal G M, Heuer A H. Metall Mater Trans, 2009; 40A: 1768
[15] Williamson D, Ozturk O, Wei R, Wilbur P J. Surf Coat Technol, 1994; 65: 15
[16] Parascandola S, Möller W, Williamson D L. Appl Phys Lett, 2000; 76: 2194
[17] Möller W, Parascandola S, Kruse O, Günzel R, Richter E. Surf Coat Technol, 1999; 116-119: 1
[18] Mändl S, Scholze F, Neumann H, Rauschenbach B. Surf Coat Technol, 2003; 174-175: 1191
[19] Christiansen T L, Somers M A J. Metall Mater Trans, 2009; 40A: 1791
[20] Yang F. Mater Sci Eng, 2005; A409: 153
[21] Chu W Y,Qiao L J,Chen Q Z,Gao K W. Fracture and Environment Fracture. Beijing: Science Press, 2000: 106
[21] (褚武扬,乔利杰,陈奇志,高克玮. 断裂与环境断裂. 北京: 科学出版社, 2000: 106)
[22] Jiang W C, Gong J M, Tang J Q, Chen H, Tu S D. Acta Metall Sin, 2006; 42: 1221
[22] (蒋文春, 巩建鸣, 唐建群, 陈 虎, 涂善东. 金属学报, 2006; 42: 1221)
[23] Wang M. Master Thesis, Nanjing University of Technology, 2013
[23] (王 萌. 南京工业大学硕士学位论文, 2013)
[24] Michal G, Ernst F, Kahn H, Cao Y, Oba F, Agarwal N, Heuer A H. Acta Mater, 2006; 54: 1597
[25] Ridley N, Stuart H. Met Sci, 1970; 4: 219
[26] Batz W, Mehl R F, Wells C. Trans Metal Soc AIME, 1950; 188: 553
[27] Liu W J, Brimacombe J K, Hawbolt E B. Acta Metall Mater, 1991; 39: 2373
[28] Sharghi-Moshtaghin R, Kahn H, Ge Y, Gu X, Martin F J, Natishan P M, Rayne R J, Michal G M, Ernst F, Heuer A H. Metall Mater Trans, 2010; 41A: 2022
[29] Sproge L, Agren J. J Heat Treat, 1988, 6: 9
[1] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[2] 巩宇, 陈永翀, 刘丹丹, 张艳萍, CSERHÁTICsaba, CSIKAttila. Zn/CuxTiy体系固态反应周期层片型结构研究*[J]. 金属学报, 2016, 52(3): 349-354.
[3] 张军,郑成武,李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程*[J]. 金属学报, 2016, 52(11): 1449-1458.
[4] 荣冬松,姜勇,巩建鸣. 奥氏体不锈钢低温超饱和渗碳实验及热动力学模拟研究*[J]. 金属学报, 2015, 51(12): 1516-1522.
[5] 陈永翀; 其鲁; 张永刚; 陈昌麒 . 固态反应周期层片型结构分析[J]. 金属学报, 2005, 41(3): 235-241 .