Please wait a minute...
金属学报  2010, Vol. 46 Issue (1): 41-46    
  论文 本期目录 | 过刊浏览 |
原位富Pb粒子/铝基金属玻璃基体复合材料的设计与制备
何杰; 李海泉; 兴成尧 赵九洲;
中国科学院金属研究所; 沈阳 110016
DESIGN AND PREPARATION OF IN SITU Pb-RICH PARTICLES/Al BASE METALLIC GLASS MATRIX COMPOSITE
HE Jie; LI Haiquan; XING Chengrao; ZHAO Jiuzhou
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

何杰 李海泉 兴成尧 赵九洲. 原位富Pb粒子/铝基金属玻璃基体复合材料的设计与制备[J]. 金属学报, 2010, 46(1): 41-46.
, , , . DESIGN AND PREPARATION OF IN SITU Pb-RICH PARTICLES/Al BASE METALLIC GLASS MATRIX COMPOSITE[J]. Acta Metall Sin, 2010, 46(1): 41-46.

全文: PDF(996 KB)  
摘要: 

在Al--Pb二元难混溶合金的基础上添加其它的合金元素Ni, Y和Co, 优化设计了新的 Al82.87Pb2.5Ni4.88Y7.8Co1.95多元难混溶合金. 开展了该多元难混溶合金的快速凝固实验, 对制备的薄带样品进行了结构表征、热稳定性分析以及显微组织形成的研究. 结果表明, 合金熔体在快速冷却过程中发生了液-液相分离, 生成富Al和富Pb两液相; 随后, 富Al基体液相发生玻璃转变, 形成铝基非晶合金基体, 而富 Pb液相凝固结晶后以球形晶态粒子形式均匀分布于铝基非晶基体中. 研究表明, 利用难混溶合金液-液相变原理, 通过快速凝固技术可以设计和制备原位球晶粒子/非晶合金基复合材料.

关键词 多元难混溶合金液-液相变快速凝固非晶复合材料原位球晶粒子    
Abstract

The typical Al-Pb immiscible alloy and the additional elements Ni, Y and Co were selected, and a new Al82.87Pb2.5Ni4.88Y7.8Co1.95 multicomponent immiscible alloy has been designed. The ribbon samples of the multicomponent alloys were prepared by rapidly quenched method. The microstructure characterization, thermal stability and formation of composite microstructure have been investigated. The results indicate that the single-phase alloy melt separates into AlNiYCo-rich and Pb-rich liquids during cooling through the miscibility gap. Subsequently, the separated AlNiYCo-rich and Pb-rich liquids solidify into Al-based glassy matrix and crystalline Pb-rich phase, respectively. The crystalline Pb-rich phase in form of spheres is homogeneously embedded into the Al-based metallic glass matrix. Based on the mechanism of the liquid-liquid phase transformation in the miscibility gap of the multicomponent immiscible alloy, a new method has been developed to produce in situ crystalline spheres embedded into the metallic glass matrix by rapid solidification.

Key wordsmulticomponent immiscible alloy    liquid-liquid phase transformation    rapid solidification    metallic glass composite    in situ crystalline sphere
收稿日期: 2009-07-17     
ZTFLH: 

TG113

 
基金资助:

国家自然科学基金项目50704032、中国科学院知识创新工程青年人才领域前沿项目和辽宁省自然科学基金项目20081009资助

作者简介: 何杰, 男, 1976年生, 副研究员, 博士

[1] Ratke L, Diefenbach S. Mater Sci Eng, 1995; 15R: 263
[2] He J, Zhao J Z, Ratke L. Acta Mater, 2006; 54: 1749
[3] Tomellini M. J Mater Sci, 2008; 43: 7102
[4] Liu Y, Guo J J, Jia J, Su Y Q, Ding H S. Acta Metall Sin, 2001; 37: 917
(刘源, 郭景杰, 贾均, 苏彦庆, 丁宏升. 金属学报, 2001; 37: 917)

[5] Wang H P, Cao C D, Wei B B. Chin Sci Bull, 2004; 49: 220
[6] He J, Zhao J Z, Wang X F, Gao L L. Metall Mater Trans, 2005; 36A: 2449
[7] Mirkovic D, Grobner J, Schmid–Fetzer R. Acta Mater, 2008; 56: 5214
[8] Curiotto S, Battezzati L, Johnson E, Pryds N. Acta Mater, 2007; 55: 6642
[9] He J, Li H Q, Zhao J Z, Dai C L. Appl Phys Lett, 2008; 93: 131907
[10] He J, Zhao J Z, Zhang X F. Chin Pat, ZL200710010037.2, 2007
(何杰, 赵九洲, 张显飞. 中国专利, ZL200710010037.2, 2007)
[11] He J, Zhao J Z, Liu J. Chin Pat, ZL200710010038.7, 2007
(何 杰, 赵九洲, 刘 俊. 中国专利, ZL200710010038.7, 2007)
[12] He J, Zhao J Z, Zhao Y. Chin Pat, ZL200710010039.1, 2007
(何杰, 赵九洲, 赵毅. 中国专利, ZL200710010039.1, 2007)
[13] Li Y, Poon S J, Shiflet G J, Xu J, Kim D H, Loffler J F. MRS Bull, 2007; 32: 624
[14] Kimura H, Masumoto T, Ast D G. Acta Metall, 1987; 35: 1757
[15] Kato H, Inoue A. Mater Trans JIM, 1997; 38: 793
[16] Choi–Yim H, Bush R, K¨oster U, Johnson W L. Acta Mater, 1999; 47: 2455
[17] Wang W H, Bai H Y. Mater Lett, 2000; 44: 59
[18] Hui X D, Kou H C, He J P, Wang Y L, Dong W, Chen G L. Intermetallics, 2002; 10: 1065
[19] Deledda S, Eckert J, Schultz L. Scr Mater, 2002; 46: 31
[20] Liu T, Shen P, Qiu F, Yin Z F, Lin Q L, Jiang Q C, Zhang T. Scr Mater, 2009; 60: 84
[21] Sun Y F, Zhang G S, Wei B C, Li W H, Wang Y R. Chin Sci Bull, 2004; 49: 542
[22] Zhang C M, Hui X D, Wang M L, Chen G L. J Univ Sci Technol, 2008; 15B: 505
[23] Zhang W, Ishihara S, Inoue A. Mater Trans JIM, 2002; 43: 1767
[24] Lee M H, Sordelet D J. J Mater Res, 2006; 21: 492
[25] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 132901
[26] Hays C C, Kim C P, Johnson W L. Mater Sci Eng, 2001; A304–306: 650
[27] Shen J, Wang G, Sun J F, Stachurski Z H, Yan C, Ye L, Zhou B D. Intermetallics, 2005; 13: 79
[28] Huang Y L, Bracchi A, Niermann T, Seibt M, Danilov D, Nestler B, Schneider S. Scr Mater, 2005; 53: 93
[29] Hui X, Dong W, Chen G L, Yao K F. Acta Mater, 2007; 55: 907
[30] Lu Z P, Ma D, Liu C T, Chang Y A. Intermetallics, 2007; 15: 253
[31] Eckert J, Das J, He G, Calin M, Kim K B. Mater Sci Eng, 2007; A449–451: 24
[32] Huang J C, Chu J P, Jang J S C. Intermetallics, 2009; 17: 973
[33] Fan J T, Zhang Z F, Mao S X, Shen B L, Inoue A. Intermetallics, 2009; 17: 445
[34] Sun G Y, Chen G, Liu C T, Chen G L. Scr Mater, 2006; 55: 375
[35] Sun G Y, Chen G, Chen G L. Intermetallics, 2007; 15: 632
[36] Zhao J Z, He J, Hu Z Q, Ratke L. Z Metallk, 2004; 95: 362
[37] Inoue A. Acta Mater, 2000; 48: 279
[38] Boer F R, Boom R, Mattens W C M, Miedema A R,
Niessen A K. Cohesion and Structure. Amsterdam: Elsevier Science, 1988: 215
[39] Hao S M. Material Thermodynamics. Beijing: Chemical Industry, 2003: 48
(郝士明. 材料热力学. 北京: 化学工业出版社, 2003: 48)

[40] Hui X D, Yang Y S, Chen X M, Hu Z Q. Acta Metall Sin, 1999; 35: 1306
(惠希东, 杨院生, 陈晓明, 胡壮麒. 金属学报, 1999; 35: 1306)
[41] Zhao J Z, Ratke L, Jia J, Li Q C. J Mater Sci Technol, 2002; 18: 197
[42] Zhao J Z, Ratke L. Scr Mater, 1998; 39: 181
[43] He J, Zhao J Z, Wang X F, Li Z Y. Acta Metall Sin, 2006; 42: 67
(何杰, 赵九洲, 王晓峰, 李中原. 金属学报, 2006; 42: 67)
[44] Inoue A. Matsumoto N, Matsumoto T. Mater Trans JIM, 1990; 31: 493
[45] Perepezko J H, Uttormark M J. Metall Mater Trans, 1996; 27A: 533
[46] Singh A, Tsai A P. Jpn J Appl Phys, 2000; 39: 4082
[47] Perepezko J H, Sebright J L, Hockel P G, Wilde G. Mater Sci Eng, 2002; A326: 144
[48] He J, Zhao J Z. Mater Sci Eng, 2005; A404: 85

[1] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[2] 胡祥, 葛嘉城, 刘思楠, 伏澍, 吴桢舵, 冯涛, 刘冬, 王循理, 兰司. 具有异常放热现象的Fe-Nb-B-Y非晶合金燃烧机理[J]. 金属学报, 2021, 57(4): 542-552.
[3] 吴国华, 陈玉狮, 丁文江. 高性能镁合金凝固组织控制研究现状与展望[J]. 金属学报, 2018, 54(5): 637-646.
[4] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[5] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.
[6] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[7] 黄火根,徐宏扬,张鹏国,王英敏,柯海波,张培,刘天伟. 具有反常非晶形成能力的U-Cr二元合金[J]. 金属学报, 2017, 53(2): 233-238.
[8] 王中原,何杰,杨柏俊,江鸿翔,赵九洲,王同敏,郝红日. Zr-Ce-Co-Cu难混溶合金的液-液相分离和双非晶相形成*[J]. 金属学报, 2016, 52(11): 1379-1387.
[9] 赵雷,江鸿翔,AHMAD Tauseef,赵九洲. Cu-Co-Fe合金雾化合金液滴凝固过程研究*[J]. 金属学报, 2015, 51(7): 883-888.
[10] 牟娟,王东梅,王沿东. 冷却速率和高径比对钛基非晶复合材料力学性能的影响*[J]. 金属学报, 2015, 51(12): 1435-1440.
[11] 陈枫,苏德喜,佟运祥,牛立群,王海波,李莉. Ni43Co7Mn41Sn9高温形状记忆合金薄带的结构和相变[J]. 金属学报, 2013, 49(8): 976-980.
[12] 陈书,赵九洲. 偏晶合金在激光表面处理条件下的凝固行为研究[J]. 金属学报, 2013, 49(5): 537-543.
[13] 李少强,陈志勇,王志宏,刘建荣,王清江,杨锐. 一种快速凝固粉末冶金高温钛合金微观组织特征研究[J]. 金属学报, 2013, 29(4): 464-474.
[14] 盛立远,章炜,赖琛,郭建亭,奚廷斐,叶恒强. 快速凝固制备Laves相增强NiAl基复合材料的微观组织及力学性能[J]. 金属学报, 2013, 49(11): 1318-1324.
[15] 李慧,梁永锋,贺睿琦,林均品,叶丰. 快速凝固Fe-6.5%Si合金有序结构及力学性能研究[J]. 金属学报, 2013, 49(11): 1452-1456.