Please wait a minute...
金属学报  2009, Vol. 45 Issue (9): 1077-1082    
  论文 本期目录 | 过刊浏览 |
纳米晶Ni晶间断裂的数值模拟
吴波1;2;魏悦广2;谭建松1;王建平1
1) 中国北方发动机研究所动力工程中心; 廊坊 065000
2) 中国科学院力学研究所非线性力学国家重点实验室; 北京 100190
NUMERICAL SIMULATIONS OF THE INTERGRANULAR FRACTURE IN NANOCRYSTALLINE Ni
WU Bo1;2; WEI Yueguang2; TAN Jiansong1; WANG Jianping1
1) Engine Engineering Center; China North Engine Research Institute; Langfang 065000
2) State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190
引用本文:

吴波 魏悦广 谭建松 王建平. 纳米晶Ni晶间断裂的数值模拟[J]. 金属学报, 2009, 45(9): 1077-1082.
, , , . NUMERICAL SIMULATIONS OF THE INTERGRANULAR FRACTURE IN NANOCRYSTALLINE Ni[J]. Acta Metall Sin, 2009, 45(9): 1077-1082.

全文: PDF(1058 KB)  
摘要: 

提出了一种针对超细晶和纳米晶金属(主要是fcc金属)晶间断裂的微结构计算模型, 即采用基于机制的应变梯度塑性(CMSG)理论描述晶粒内部材料塑性变形过程中的变<形、强化和尺度效应; 采用黏聚力界面模型来模拟晶界的滑移和分离现象, 以及晶间裂纹的萌生和演化, 直至晶间断裂导致的材料失效. 利用该计算模型模拟了纳米晶Ni的拉伸实验过程, 对纳米晶Ni宏观力学行为和晶间微裂纹萌生与扩展之间的关系进行了研究, 验证了针对超细晶和纳米晶力学性能的计算模型的有效性; 同时, 模拟结果表明, 非均匀塑性变形导致高应变梯度效应, 晶粒塑性变形强化显著, 使晶界主导的变形机制对纳米晶金属的整体力学性能产生重要影响.

关键词 纳米晶晶间断裂应变梯度塑性有限元模拟    
Abstract

The intergranular fracture characteristics in nanocrystalline and ultra--fine polycrystalline metallic materials present intensive size effect and microstructure geometry effect. The conventional elastic--plastic constitutive theory is unable to describe these effects because it doesn't contain any length parameters to characterize the scale changing. Regarding this, a micro--structured model was proposed for the study on intergranular fracture of nanocrystalline and microcrystalline metals (mainly for the fcc metals). The hardening and size effects of material plastic deformation are described by the computational model based on the conventional theory of mechanism--based strain gradient plasticity (CMSG). A cohesive interface model was used to simulate the processes of grain--boundary sliding and separation, the initiation and propagation of intergranular cracks until the material fracture. The tensile experiment and stress--strain curves of nanocrystalline Ni were simulated by using the present model. Then the relation between macroscopic mechanical behaviors and intergranular crack's initiation and propagation in nanocrystalline Ni was investigated. Through the simulation to the experimental result in literature, the validity of the proposed model calculated nanocrystalline and ultra--fine polycrystalline mechanical properties was confirmed. At the same time, the simulation results show that the high strain gradient effects and severely plastic hardening of grain are induced by inhomogeneous plastic deformation, and the grain boundary induced deformation has a significant influence on the overall mechanical properties of nanocrystalline metals.

Key wordsnanocrystalline    intergranular fracture    strain gradient plasticity    finite element simulation
收稿日期: 2009-01-08     
ZTFLH: 

TG111.91

 
基金资助:

国家自然科学基金项目10432050和10721202资助

作者简介: 吴波, 男, 1978年生, 博士生

[1] Schiφtz J, Vegge T, Di T F D, Jacobsen K W. Phys Rev, 1999; 60B: 971
[2] van Swygenhoven H, Caro A, Farkas D. Scr Mater, 2001; 44: 1513
[3] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2004; 3: 43
[4] Farkas D, van Swygenhoven H, Derlet P M. Phys Rev, 2002; 66B: 060101–1–4
[5] Cao A, Wei Y. Phys Rev, 2007; 76B: 024113
[6] Schiφtz J, Di T D, Jacobsen K W. Nature, 1998; 391: 561
[7] Fleck N A, Hutchinson J W. Adv Appl Mech, 1997; 33: 295
[8] Huang Y, Qu S, Hwang K C, Li M, Gao H. Int J Plast, 2004; 20: 753
[9] Gao H, Huang Y, Nix WD, Hutchinson J W. J Mech Phys Solids, 1999; 47: 1239
[10] Needleman A. Int J Fract, 1990; 40: 21
[11] Camacho G T, Ortiz M. Int J Solids Struct, 1996; 33: 2899
[12] Chandra N, Li H, Shet C, Ghonem H. Int J Solids Struct, 2002; 39: 2827
[13] Hutchinson J W, Evans A G. Acta Mater, 2000; 48: 125
[14] Turon A, Camanho P P, Costa J, D´avila C G. An Interface Damage Model for the Simulation of Delamination
Under Variable–Mode Ratio in Composite Materials. NASA Langley Research Center, Hampton, NASA/TM–2004–213277
[15] Warner D H, Sansoz F, Molinari J F. Int J Plast, 2006; 22: 754
[16] van der Sluis O, Schreurs P J G, Meijer H E H. Mech Mater, 2001; 33: 499
[17] Iesulauro E, Ingraffea A R, Arwade S, Wawrzynek P A. Fatigue Fract Mech, 2002; 33: 1417
[18] Wei Y J, Anand L. J Mech Phys Solids, 2004; 52: 2587
[19] Wang N, Wang Z R, Aust K T, Erb U. Acta Metal Mater, 1995; 43: 519
[20] Zhu B, Asaro R J, Krysl P, Bailey R. Acta Mater, 2005; 53: 4825

[1] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[2] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[3] 王一涵, 原园, 喻嘉彬, 吴宏辉, 吴渊, 蒋虽合, 刘雄军, 王辉, 吕昭平. 纳米晶合金热稳定性的熵调控设计[J]. 金属学报, 2021, 57(4): 403-412.
[4] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[5] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[6] 姜霖, 张亮, 刘志权. Al中间层和Ni(V)过渡层对Co/Al/Cu三明治结构靶材背板组件焊接残余应力的影响[J]. 金属学报, 2020, 56(10): 1433-1440.
[7] 金辰日, 杨素媛, 邓学元, 王扬卫, 程兴旺. 纳米晶化对锆基非晶合金动态压缩性能的影响[J]. 金属学报, 2019, 55(12): 1561-1568.
[8] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[9] 梁秀兵, 范建文, 张志彬, 陈永雄. 铝基非晶纳米晶复合涂层显微组织与腐蚀性能研究[J]. 金属学报, 2018, 54(8): 1193-1203.
[10] 文舒, 董安平, 陆燕玲, 祝国梁, 疏达, 孙宝德. GH536高温合金选区激光熔化温度场和残余应力的有限元模拟[J]. 金属学报, 2018, 54(3): 393-403.
[11] 刘佳琳, 王玉敏, 张国兴, 张旭, 杨丽娜, 杨青, 杨锐. SiC单纤维增强TC17复合材料横向拉伸性能研究[J]. 金属学报, 2018, 54(12): 1809-1817.
[12] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[13] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[14] 刘玉, 秦盛伟, 左训伟, 陈乃录, 戎咏华. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53(6): 733-742.
[15] 郑玉峰,吴远浩. 处在变革中的医用金属材料[J]. 金属学报, 2017, 53(3): 257-297.