Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 513-518    
  论文 本期目录 | 过刊浏览 |
Laves相合金氘化物Ti0.68Zr0.32MnCrD3.0中氘占位的中子衍射研究
吴尔冬1;郭秀梅1;孙凯2
1.中国科学院金属研究所; 沈阳 110016
2.中国原子能科学研究院; 北京 102413
NEUTRON DIFFRACTION STUDY OF DEUTERIUM OCCUPANCY OF DEUTERIDE OF LAVES PHASE ALLOY Ti0.68Zr0.32MnCrD3.0
WU Erdong1; GUO Xiumei1; SUN Kai2
1.Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2.China Institute of Atomic Energy; Beijing 102413
引用本文:

吴尔冬 郭秀梅 孙凯. Laves相合金氘化物Ti0.68Zr0.32MnCrD3.0中氘占位的中子衍射研究[J]. 金属学报, 2009, 45(5): 513-518.
, , . NEUTRON DIFFRACTION STUDY OF DEUTERIUM OCCUPANCY OF DEUTERIDE OF LAVES PHASE ALLOY Ti0.68Zr0.32MnCrD3.0[J]. Acta Metall Sin, 2009, 45(5): 513-518.

全文: PDF(1095 KB)  
摘要: 

利用中子衍射和XRD技术, 结合Reitveld拟合和Fourier变换, 对Laves相零基体合金Ti0.68Zr0.32MnCr的氘化物中氘的占位特征进行了研究. 氘化物Ti0.68Zr0.32MnCrD3.0的中子衍射谱除Bragg衍射峰外, 还出现明显的漫散射包, 而相应的XRD谱却只呈现衍射峰, 未发现漫散射包. 对衍射谱与相应的RDF分析表明, 这种C14型Laves相氘化物中只有部分氘原子随机不饱和地分布在确定的4种A2B2四面体间隙位置, 并形成长程有序结构, 这部分氘原子在6h1和12k位的占位系数比6h2和24l位大. 而氘化物中的另一部分氘原子并不是随机分布, 而是不同程度地偏离间隙中心的位置, 形成比长程有序结构更大的氘原子间距的短程有序结构. 短程与长程有序的氘原子共同形成沿着合金六方晶格的c轴在Ti/Zr原子周围的四面体间隙聚集的网格团簇结构. 这种偏离有序位置的团簇结构是大量氘原子在晶格间隙中聚集所造成的.

关键词 Laves相合金氘化物 中子衍射 氘占位 短程有序结构 漫散射    
Abstract

The occurrences of diffuse scattering in the neutron diffraction patterns of the deuterides of Laves phase have frequently been reported, but have not been specifically studied. As the diffuse scattering indicates the formation of short range ordering of D and/or alloy atoms in the phase, we have particularly studied the possible short range ordering of interstitial D atoms in the deuteride of a null matrix Laves phase alloy Ti0.68Zr0.32MnCr by neutron and XRD techniques. The neutron diffraction pattern of the deuteride Ti0.68Zr0.32MnCrD3.0 has shown not only the Bragg peaks, but also strong diffuse scattering, whereas the corresponding XRD pattern has only shown the Bragg peaks. These phenomena confirm the formation of short range ordering of interstitial D in the deuteride. The D occupancy and short range ordering of the deuteride were analyzed by the Rietveld refinement and Fourier transformation. The analyses suggest that a fraction of D atoms in the deuteride is randomly and unsaturatedly distributed in certain interstices, and forms a long range ordered structure in the crystal lattice. These interstitial atoms are in four types of the A2B2 tetrahedral sites, where the occupancies of the D atoms in the 6h1 and 12k crystallographic sites are higher than those in the 6h2 and 24l sites. However, other D atoms in the deuteride have stayed away from the centres of the interstitial sites to different extents, and formed the short range ordered structure. These D atoms keep an average interdistance of 0.243 nm for the nearest neighbours, larger than that of about 0.2 nm for the long range ordered D atoms. The short and long range ordered D atoms together form a cluster network surround the Ti/Zr atoms along the c--axis of the lattice. The phenomenon is likely to be caused by the accumulation of great amount of D atoms in the interstices of the alloy.

Key wordsdeuteride of Laves phase alloy    neutron diffraction    D occupancy    short range ordering structure    diffuse scattering
收稿日期: 2008-10-10     
ZTFLH: 

TG146.2

 
作者简介: 吴尔冬, 男, 1951年生, 研究员

[1] Chen C P, Wang Q D. Acta Energ Solar Sin (special issue),1999: 189
(陈长聘, 王启东. 太阳能学报(特刊), 1999: 189)
[2] Hu Z L. Hydrogen Storage Materials. Beijing: Chemical Industry Press, 2002: 86
(胡子龙. 贮氢材料. 北京: 化学工业出版社, 2002: 86)
[3] Moriwaki Y, Gamo T, Iwaki T. J Less–Common Met, 1991; 172: 1028
[4] Park J G, Jang H Y, Han S C, Lee P S, Lee J Y. J Alloys Compd, 2001; 325: 293
[5] Guo X M, Wu E D, Wang S C. Rare Metals, 2006; 25(6): 218
[6] Guo X M, Wu E D. J Alloy Compd, 2008; 455: 191
[7] Sun K, Guo X M, Wu E D, Liu Y T, Wang H L. Physica, 2006; 385–386B: 137
[8] Dwight A E. Trans ASM, 1961; 53: 479
[9] Zheng Q Y, Yu S Z, Hou Y J, Chen X Z. Henan Sci, 1997; 15: 149
(郑庆元, 余守志, 侯玉杰, 陈峡忠. 河南科学, 1997; 15: 149)
[10] Shoemaker D P, Shoemaker C B. J Less–Common Met,1979; 68: 43
[11] Magee C B, Liu J, Lundin C E. J Less–Common Met, 1981; 78: 119
[12] Jacob I, Shaltiel D. J Less–Common Met, 1979; 65: 117
[13] Westlake D G. J Less–Common Met, 1983; 90: 251
[14] Yuan X Z, Wu E D, Guo X M, Du X M, Sun K, Chen D F,Chen B, Sun G A. At Energy Sci Technol, 2008; 41: 517
(苑学众, 吴尔冬, 郭秀梅, 杜晓明, 孙 凯, 陈东风, 陈 波, 孙光爱. 原子能科学技术, 2008; 41: 517)
[15] Xue Y J, Guo L P, Chen D F, Zhang B S, Chen N, Zhang L, Sun K, Xiao H W, Zhang L F, Wang H L, Li J H, Wu E D, Yuan X Z. At Energy Sci Technol, 2005; 39: 263
(薛艳杰, 郭立平, 陈东风, 张百生, 陈 娜, 张 莉, 孙 凯, 肖红文, 张凌飞, 王洪立, 李峻宏, 吴尔冬,苑学众. 原子能科学技术, 2005; 39: 263)
[16] Hunter B A, Howard C J. LHPM a Computer Program forRietveld Analysis of X–ray and Neutron Powder DiffractionPatterns (ANSTO report). Sydney: Australian Nuclear
Science and Technology Organization, 1998
[17] Larson A C, Von Dreele R B. General Structure AnalysisSystem (GSAS) (Report LAUR 86–748). New Mexico:Los Alamos National Laboratory, 2004
[18] Klug H P, Alexander L E. X–ray Diffraction Procedures.New York: Wiley, 1974: 791
[19] Didisheim J J, Yvon K, Shaltiel D, Fischer P. Solid State Commun, 1979; 31: 47
[20] Didisheim J J, Yvon K, Shaltiel D, Fischer P, Bujard P, Walker E. Solid State Commun, 1979; 32: 1087
[21] Pontonnier L, Miraglia S, Fruchart D, Soubeyroux J L, Baudry A, Boyer P. J Alloys Compd, 1992; 186: 241
[22] Soubeyroux J L, Pontonnier L, Miraglia S, Isnard O, Fruchart D, Akiba E, Hayakawa H, Fujitani S, Yonezu IZ. Phys Chem, 1993; 179: 187
[23] Guo X M. PhD Thesis, Graduate University of Chinese Academy of Sciences, Beijing, 2008
(郭秀梅. 中国科学院研究生院博士学位论文, 北京, 2008)
[24] Knell U, Wipf H, Lautenschlager G, Hock R, Weitzel H,Ressouche E. J Phys: Condens Matter, 1994; 6: 1461
[25] Sorby M H, Mellergard A, Delaplane R G, Wannberg A,Hauback B C, Fjellvag H. J Alloys Compd, 2004; 363: 209
[26] Fruchart D, Soubeyroux J L, Hempelmann R. J Less Common Met, 1984; 99: 307
[27] Shinar J, Jacob I, Davidov D, Shaltiel D. Hydrogen Sorption Properties in Binary and Psuedobinary Intermetallic Compounds, in Hydrides for Energy Storage. Norway:Geilo, 1978: 337

[1] 李时磊, 李阳, 王友康, 王胜杰, 何伦华, 孙光爱, 肖体乔, 王沿东. 基于中子与同步辐射技术的工程材料/部件多尺度残余应力评价[J]. 金属学报, 2023, 59(8): 1001-1014.
[2] 高钰璧, 丁雨田, 李海峰, 董洪标, 张瑞尧, 李军, 罗全顺. 变形速率对GH3625合金弹-塑性变形行为的影响[J]. 金属学报, 2022, 58(5): 695-708.
[3] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[4] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.
[5] 毕中南,秦海龙,董志国,王相平,王鸣,刘永泉,杜金辉,张继. 高温合金盘锻件制备过程残余应力的演化规律及机制[J]. 金属学报, 2019, 55(9): 1160-1174.
[6] 秦海龙,张瑞尧,毕中南,杜洪标,张金辉. GH4169合金圆盘时效过程残余应力的演化规律研究[J]. 金属学报, 2019, 55(8): 997-1007.
[7] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[8] 李眉娟,刘晓龙,刘蕴韬,郑明毅,王琛,陈东风. 累积叠轧Mg/Al多层复合板材的织构演变及力学性能*[J]. 金属学报, 2016, 52(4): 463-472.
[9] 徐平光,殷匠,张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究*[J]. 金属学报, 2015, 51(11): 1297-1305.
[10] 张孟,刘丹敏,刘翠秀,黄清镇,王少博,张虎,岳明. Mn1.2Fe0.8P0.76Ge0.24磁制冷材料相变过程与磁性能关系的研究[J]. 金属学报, 2013, 49(7): 783-788.
[11] 蒋文春 Woo Wanchuck 王炳英 涂善东. 中子衍射和有限元法研究不锈钢复合板补焊残余应力[J]. 金属学报, 2012, 48(12): 1525-1529.
[12] 徐平光; 友田阳 . 基于原位中子衍射表征技术的进展[J]. 金属学报, 2006, 42(7): 681-688 .
[13] 潘洪革;杜红林;陈长聘;韩秀锋;杨伏明. Y_3(Fe,M0)_(29)金属间化合物的结构特性[J]. 金属学报, 1998, 34(5): 473-482.
[14] 杨王玥;盛丽珍;孙祖庆;黄原定;毛卫民;张百生;叶春堂. 代位合金元素原子在Fe_3Al金属间化合物亚点阵占位的中子衍射研究[J]. 金属学报, 1996, 32(8): 799-804.
[15] 任晓兵;王笑天;清水谦一;唯木次男. Fe-1.83C马氏体调幅分解的TEM研究[J]. 金属学报, 1994, 30(7): 289-295.