Please wait a minute...
金属学报  2009, Vol. 45 Issue (4): 476-484    
  论文 本期目录 | 过刊浏览 |
板坯连铸结晶器内钢液过热消除过程的数值模拟
于海岐;朱苗勇
东北大学材料与冶金学院; 沈阳 110004
NUMERICAL SIMULATION OF LIQUID STEEL SUPERHEAT REMOVAL IN SLAB CONTINUOUS CASTING MOLD
YU Haiqi; ZHU Miaoyong
School of Materials and Metallurgy; Northeastern University; Shenyang 110004
引用本文:

于海岐 朱苗勇. 板坯连铸结晶器内钢液过热消除过程的数值模拟[J]. 金属学报, 2009, 45(4): 476-484.
, . NUMERICAL SIMULATION OF LIQUID STEEL SUPERHEAT REMOVAL IN SLAB CONTINUOUS CASTING MOLD[J]. Acta Metall Sin, 2009, 45(4): 476-484.

全文: PDF(5645 KB)  
摘要: 

利用数值模拟方法研究了连铸结晶器内钢液的三维温度分布和传热, 分析了水口浸入深度、水口侧孔倾角、结晶器宽度、拉速、钢液过热度、吹Ar、电磁制动及吹Ar量和电流强度等对结晶器内过热钢液的温度分布和传热的影响. 结果表明, 凝固坯壳前沿的最大热量传入处出现在结晶器窄面的钢液冲击点附近, 钢液的大部分过热耗散发生在这一区域附近; 过热钢液传递到凝固坯壳表面的热流量与拉速和过热度的增加成正比; 吹Ar导致结晶器窄面冲击区域和宽面上部区域的热流密度增加; 电磁制动有利于提高结晶器上部区域的温度, 但对热流密度分布没有明显影响; 吹Ar和电磁制动的双重作用使结晶器上部区域的宽面热流密度提高, 冲击区域的热流密度分布没有明显变化.

关键词 板坯结晶器 温度 传热 吹Ar 电磁制动 数值模拟    
Abstract

Mathematical model was developed to study the 3D temperature distribution and heat transfer from superheated liquid steel to the inside of the solidifying shell in the slab continuous casting mold. The effects of some factors, such as submergence depth and port angle of submerged entry nozzle (SEN), mold width, casting speed, superheat temperature, argon gas injection, electromagnetic brake (EMBr) and also including the argon gas flow rate and current intensity etc., on the temperature distribution and heat transfer of superheated liquid steel in the mold were analyzed. The results indicate that the maximum heat input to the solidifying shell forefront occurs near the impingement point of liquid steel on the narrow face of mold, and the most superheat of superheated liquid steel is dissipated near the impingement zone. Heat flux of superheated liquid steel delivered to the shell  surface increases in direct proportion to the casting speed and superheat temperature, respectively. Argon gas injection leads to a substantial increase in superheat flux to the impingement zone of narrow face and the upper region of wide face. EMBr is beneficial in increasing the temperature of upper region of the mold, but has no obvious effect on the heat flux distribution. The double action of argon gas injection and EMBr also produces an increase in heat flux to the upper region of wide face, which has no visible influence for the hat flux distribution of impingement zone.

Key wordsslab mold    temperature    heat transfer    argon gas injection    electromagnetic brake    numerical simulation
收稿日期: 2008-07-30     
ZTFLH: 

TF777.1

 
基金资助:

国家自然科学基金委员会和宝钢集团公司“钢铁联合研究基金”项目50674020以及新世纪优秀人才支持计划项目NCET--04--0285资助

作者简介: 于海岐, 男, 1980年生, 博士生

[1] Zhu Z Y, Wang X H, Wang W J. Iron Steel Res, 2000; 115(4): 51
(朱志远, 王新华, 王万军. 钢铁研究, 2000; 115(4): 51)
[2] Lait J E, Brimacombe J K, Weinberg F. Ironmaking Steel making, 1974; 2: 90
[3] Lally B, Biegler L, Henein H. Metall Trans, 1990; 21B: 761
[4] Yang B J, Su J Y. Iron Steel, 1996; 31(9): 24
(杨秉俭, 苏俊义. 钢铁, 1996; 31(9): 24)
[5] Savage J, Pritchard W H. J Iron Steel Inst, 1954; 178: 269
[6] Savage J. J Iron Steel Inst, 1962; 200: 41
[7] Flint P J. 73th Steelmaking Conf, Warrendale, PA: Iron and Steel Society, 1990: 481
[8] Davies R, Blake N, Campell P. Proceeding of the 4th International Conference of Continuous Casting, Brussels, D¨usseldorf: Verlag Stahleisen, 1988: 645
[9] Huang X, Thomas B G, Najjar F M. Metall Trans, 1992; 23B: 339
[10] Thomas B G, Huang X. 76th Steelmakng Conf, Warrendale, PA: Iron and Steel Society, 1993: 273
[11] Zhang J M, Wang L F, Wang X H, Zhang L, Tang H B. Acta Metall Sin, 2003; 39: 1281
(张炯明, 王立峰, 王新华, 张 立, 唐海波. 金属学报, 2003; 39: 1281)
[12] Li Z Y, Zhao J Z. Acta Metall Sin, 2006; 42: 211
(李中原, 赵九洲. 金属学报, 2006; 42: 211)
[13] Li D H, Qiu Y Q, Liu X H, Wang G D. Foundry Technol, 2004; 25: 529
(李东辉, 邱以清, 刘相华, 王国栋. 铸造技术, 2004; 25: 529)
[14] Gong T, Yang H X, Deng K. Chin J Comput Phys, 2000; 17: 690
(龚 涛, 杨海西, 邓 康. 计算物理, 2000; 17: 690)
[15] Choudhary S K, Mazumdar D, Ghosh A. ISIJ Int, 1993; 33: 764
[16] Shamsi M R R I, Ajmani S K. ISIJ Int, 2007; 47: 433
[17] Yang H L, Zhao L G, Zhang X Z, Deng K W, Li W C, Gan Y. Metall Mater Trans, 1998; 29B: 1345
[18] Yu H Q, Zhu M Y. Acta Metall Sin, 2008; 44: 619
(于海岐, 朱苗勇. 金属学报, 2008; 44: 619)

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[5] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[6] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[9] 彭治强, 柳前, 郭东伟, 曾子航, 曹江海, 侯自兵. 基于大数据挖掘的连铸结晶器传热独立变化规律[J]. 金属学报, 2023, 59(10): 1389-1400.
[10] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[11] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[12] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[13] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[14] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[15] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.