Please wait a minute...
金属学报  2009, Vol. 45 Issue (2): 183-188    
  论文 本期目录 | 过刊浏览 |
铝合金薄板搅拌摩擦焊接残余变形的数值分析
鄢东洋1;史清宇1;吴爱萍1;Juergen Silvanus2;刘园1;张增磊1
1. 清华大学机械工程系; 北京 100084
2. European Aeronautic Defence and Space Company Innovation Works; Munich 81663; Germany
NUMERICAL ANALYSIS ON THE RESIDUAL DISTORTION OF Al ALLOY SHEET AFTER FRICTION STIR WELDING
YAN Dongyang 1; SHI Qingyu 1; WU Aiping 1; Juergen Silvanus 2; LIU Yuan 1; ZHANG Zenglei 1
1. Department of Mechanical Engineering; Tsinghua University; Beijing 100084
2. European Aeronautic Defence and Space Company Innovation Works; Munich 81663; Germany
引用本文:

鄢东洋 史清宇 吴爱萍 Juergen Silvanus 刘园 张增磊. 铝合金薄板搅拌摩擦焊接残余变形的数值分析[J]. 金属学报, 2009, 45(2): 183-188.
, , , , , . NUMERICAL ANALYSIS ON THE RESIDUAL DISTORTION OF Al ALLOY SHEET AFTER FRICTION STIR WELDING[J]. Acta Metall Sin, 2009, 45(2): 183-188.

全文: PDF(994 KB)  
摘要: 

大尺寸6056铝合金薄板经过搅拌摩擦焊接实验后出现了严重的面外变形,虽然变形程度小于熔化焊结果, 但已经影响到被焊薄 板的装配和使用.为详细研究和预测铝合金薄板在搅拌摩擦焊后的残余变形, 以焊接实验条件为基础, 建立了搅拌摩擦焊接三维有限元 热力耦合分析模型. 模型中涉及了利用搅拌头工作转矩计算热输入量、工件和卡具之间的接触热传导、随温度变化的材料模型, 以及综合 考虑搅拌头机械作用等工作.利用该模型可以得到不对称的纵向残余应力结果, 残余变形的趋势在整块板上都与实验结果相同, 而且变形量和实验测量值之间的误差在20%以内.

关键词 搅拌摩擦焊 铝合金 数值模拟 残余变形    
Abstract

Although the residual distortion of 6056 Al alloy sheet after friction stir welding (FSW) is smaller than that after fusion welding, it is still a significant defect for the assembly and application of welded structure. In order to investigate and predict the residual distortion of Al alloy sheet after FSW, a 3D thermo–mechanical model was established based on experimental conditions to simulate the FSW process. In the model, heat input was computed based on the torque data measured during experiment, and heat transfer between welded sheet and fixtures was simplified in the way of convection, and the properties of 6056 Al alloy were considered as temperature function, and tool loads were taken into account during the mechanical analysis. The simulation results show that the distribution of longitudinal residual stress along the width of sheet is asymmetrical, and the residual distortion corresponds well with experimental results both in distortion pattern and deformation values on the whole sheet.

Key wordsfriction stir welding    Al alloy    numerical simulation    residual distortion
收稿日期: 2008-07-30     
ZTFLH: 

TG404

 
基金资助:

国家自然科学基金项目50875146和国家高技术研究发展计划项目2006AA04Z139资助

作者简介: 鄢东洋, 男, 1982年生, 博士生

[1] Thomas W M, Nicholas E D, Needham J C, Murch M G, Templesmith P, Dawes C J. Gr Br Pat Appl No. 9 125978.8, 1991
[2] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[3] Tang W, Guo X, McClure J C, Murr L E. J Mater Process Manuf Sci, 1998; 7(2): 163
[4] Staron P, Kocak M. In: David S A, Debroy T, Lippold J C, Smartt H B, Vitek J M eds., Proc 6th Int Conf on Trends in Welding Research, Pine Mountain: ASM International, 2003: 216
[5] Song M, Kovacevic R. J Eng Manuf, 2003; 217(1): 73
[6] Colegrove P A, Shercliff H R. Sci Technol Weld Join, 2003; 8: 360
[7] Chao Y J, Qi X, Tang W. Trans ASME, 2003; 125: 138
[8] Shi Q Y, Dickerson T L, Shercliff H R. Proc 4th Int Symp on Friction Stir Welding, TWI Center, Park City, USA, 2003 (CD–ROM)
[9] Li T, Shi Q Y, Li H K. Sci Technol Weld Join, 2007; 12: 664
[10] Price D A, Williams S W, Wescott A, Harrison C J C, Rezai A, Steuwer A, Peel M, Staron P, Kocak M. Sci Technol Weld Join, 2007; 12: 620
[11] Shi Q Y, Silvanus J, Liu Y, Yan D Y, Li H K. Sci Technol Weld Join, 2008; 13: 472
[12] Chai P, Luan G H, Guo D L, Li J, Trans Chin Weld Inst, 2005; 26(11): 79
(柴 鹏, 栾国红, 郭德伦, 李菊. 焊接学报, 2005; 26(11): 79)
[13] Grimvall G. Thermophysical Properties of Materials: Non Metallic Solids. New York: Elsevier, 1999: 243
[14] Parrott J E, Stuckes A D. Thermal Conductivity of Solids. London: Pion, 1975: 156
[15] Preston R V. PhD Thesis, Cambridge University, 2000

[16] Zhu X K, Chao Y J. J Mater Process Technol, 2004; 146: 263
[17] Li H K. Postdoctoral Report, Tsinghua University, Beijing, 2007
[18] Wu C S. Numerical Analysis for Heat Transfer in Welding Process. Harbin: Harbin Institute of Technology Press, 1990: 95
武传松. 焊接热过程数值分析. 哈尔滨: 哈尔滨工业出版社, 1990: 95)
[19] Shi Q Y, Dickerson T L, Shercliff H R. In: David S A, DebRoy T, Lippold J C, Smartt H B, Vitek J M eds., Proc 6th Int Conf on Trends in Welding Research, Pine Mountain: ASM International, 2003: 247
[20] Dickerson T L, Shi Q Y, Shercliff H R. Proc 4th Int Symp On Friction Stir Welding, TWI Center, Park City, USA, 2003 (CD–ROM)
[21] Vuyst T, Dealvise L D. Proc 5th Int Symp on Friction Stir Welding, TWI Center, Park City, USA, 2004 (CD–ROM)
[22] Buffa G, Hua J, Shivpuri R, Fratini L. Mater Sci Eng,2006; A419: 389

[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[4] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[7] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[10] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[11] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[12] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[13] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[14] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[15] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.