Please wait a minute...
金属学报  2009, Vol. 45 Issue (12): 1425-1434    
  论文 本期目录 | 过刊浏览 |
铁基合金中板条马氏体帐篷型表面浮凸位移的定量分析
吴静1;刘新新1;顾新福1;戴付志1;杨海涛2;张文征1
1. 清华大学材料科学与工程系先进材料实验室; 北京 100084
2. 清华大学清华---富士康纳米科技研究中心; 北京 100084
QUANTITATIVE ANALYSIS FOR THE DISPLACEMENT OF TENT–SHAPED SURFACE RELIEF OF LATH MARTENSITE IN Fe–BASED ALLOY
WU Jing 1; LIU Xinxin 1; GU Xinfu 1; DAI Fuzhi 1; YANG Haitao 2; ZHANG Wenzheng 1
1. Laboratory of Advanced Materials; Department of Materials Science and Engineering; Tsinghua University;Beijing 100084
2. Tsinghua–Foxconn Nanotechnology Research Center; Tsinghua University; Beijing 100084
引用本文:

吴静 刘新新 顾新福 戴付志 杨海涛 张文征 . 铁基合金中板条马氏体帐篷型表面浮凸位移的定量分析[J]. 金属学报, 2009, 45(12): 1425-1434.
, , , , , . QUANTITATIVE ANALYSIS FOR THE DISPLACEMENT OF TENT–SHAPED SURFACE RELIEF OF LATH MARTENSITE IN Fe–BASED ALLOY[J]. Acta Metall Sin, 2009, 45(12): 1425-1434.

全文: PDF(3195 KB)  
摘要: 

表面浮凸伴随着丰富的相变晶体学信息, 对板条马氏体表面浮凸的形状应变进行研究, 可以获得相变过程中累积的长程应变场的晶体学信息, 进而实现对相变应变场和界面结构的准确描述. 本文对Fe-20.2Ni-5.5Mn(质量分数, %)合金中板条马氏体表面浮凸进行系统地定量表征, 并借鉴双面金相位移合成法合成单面样品浮凸的位移矢量. 采用原子力显微镜(AFM)结合电子背散射衍射(EBSD)观察到该合金中板条马氏体浮凸呈帐篷型. EBSD统计分析显示板条马氏体与基体之间位向关系接近K-S关系, 它们的惯习面接近(111)f, 合成的位移矢量分散在[121]f附近, 最大切变角为27.49°. 实验中采用AFM观察到的浮凸角为22.41°, 小于合成得到的最大切变角, 这可能由于惯习面不垂直于自由表面所致.

关键词 相变晶体学 板条马氏体 表面浮凸 形状应变    
Abstract

Lath martensite with a dislocation substructure is one of the most common forms of martensite in structural steels. Surface relief has been regarded as an important characteristic in the martensitic transformation. Crystallographic features on surface relief are essential to get into deep insight of the long range strain field in the transformation, and explore the mechanism of the phase transformation. However, very limited experimental data on the shape strain associated with the formation of surface relief caused by the lath martensite have been reported so far, especially for the quantitative study of the displacement vector. The present investigation was carried out to study the shape deformation in the formation of the lath martensite on the austenite matrix in an Fe–20.2Ni–5.5Mn (mass fraction, %) alloy. The shape strain accompanying surface relief, such as the magnitude and direction of the displacement vector, has been concerned in a quantitative way. The morphology of the relief was studied by the optical microscope (OM) and the atomic force microcope (AFM). The orientations of the matrix grain and the lath were measured by the electron backscattered diffraction (EBSD), respectively, which was used to determine the orientation of the habit plane, and the orientation relationship (OR) between the lath martensite and its neighboring matrix. Combing the data from EBSD and AFM, it is concluded that the relief is produced by a single bcc crystal, which exhibits a tent-shaped relief. Based on an electron backscattered diffraction analysis, the ustenite/martensite orientation relationship is found to be in the closer vicinity of K–S orientation relationship, which is consistent with that in bulk materials obtained by transmissin electron microscope (TEM), and the habit plane is determined to be near (111)f . The largest shear angle for the relief is calculated to be 27.49°, and the directions of comined displacement vector are scattered around [121]f . However, the bserved maximum surface tilt angle is 22.41°, which is smaller than the calculated value. Considerinthe habit plane is not perpendicular to the pre–polishing surface, the measured smaller value f tilt angles is reasonable.

Key wordsphase transformation    lath martensitesurface relief    shape strain
收稿日期: 2009-07-21     
ZTFLH: 

O71

 
基金资助:

国家自然科学基金资助项目 50671051

作者简介: 吴静, 女, 苗族, 1983年生, 博士生

[1] Clark H M, Wayman C M. Phase Transformations. Ohio: ASM, 1970: 61
[2] Furuhara T, Miyajima N, Moritani T, Maki T. J Phys IV Fr, 2003; 112: 319
[3] Sandvik B P J, Wayman C M. Metall Trans, 1983; 14A:823
[4] Wayman C M. In: Aaronson H I eds, Proc Int Conf on Solid: Solid Phase Transformations, Waitendale, PA:Metallurgical Society of AIME, 1981: 119
[5] Morito S, Huang X, Furuhara T, Maki T, Hansen N. Acta Mater, 2006; 54: 5323
[6] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279
[7] Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. Acta Mater, 2003; 51: 1789
[8] Sandvik B P J, Wayman C M. Metall Trans, 1983; 14A: 823
[9] Sandvik B P J, Wayman C M. Metall Trans, 1983; 14A: 809
[10] Fuentes M, Sevillano J G, Urcola J J, Zubillaga J C. Mater Sci Eng, 1980; 43: 109
[11] Sarma D S, Whiteman J A, Woodhead J H. Met Sci, 1976: 391
[12] Kelly P M, Jostsons A, Blake R G. Acta Metall Mater, 1990; 38: 1075
[13] Miyamoto G, Takayama N, Furuhara T. Scr Mater, 2009; 60: 1113
[14] Wakasa K, Wayman C M. Acta Metall, 1981; 29: 1013
[15] Yang D Z, Wayman C M. Scr Metall, 1983; 17: 1377
[16] Yang D Z, Wayman C M. Acta Metall, 1984; 32: 949
[17] Bryans B G, Bell T, Thomas V M. The Mechanism of Phase Transformations in Solids. London: Institute of Metals, 1969: 181
[18] Kajiwara S. Philos Mag, 1981; 43A: 1483
[19] Efsic E J, Wayman C M. Trans AIME, 1966; 239: 873
[20] Dunne D P, Bowles J S. Acta Metall, 1969; 17: 201
[21] Dunne D P, Wayman C M. Acta Metall, 1970; 18: 981
[22] Williams A J, Cahn R W, Barrett C S. Acta Metall, 1954; 2: 117
[23] Watson J D, McDougall P G. Acta Metall, 1973; 21: 961
[24] Lee H J, Aaronson H I. Acta Metall, 1988; 36: 787
[25] Swallow E S, Bhadeshia H K D H. Mater Sci Technol, 1996; 12: 121
[26] Yamamoto M, Fujisawa T, Saburi T. Ultramicroscopy, 1992; 42–44: 1422
[27] Yamamoto M, Fujisawa T, Sburi T, Kurumizawa T. Surf Sci, 1992; 266: 289
[28] Yang Z G, Fang H S, Wang J J, Zheng Y K. J Mater Sci Lett, 1996; 15: 721
[29] Yang Z G, Fang H S, Wang J J, Li C M, Zheng Y K. Phys Rev, 1995; 52B: 7879
[30] Waitz T, Karnthaler H P. Acta Metall, 1997; 45: 837
[31] Lin X P, Zhang Y, Gu N J, Meng Z W, Ma X L. Trans Mater Heat Treat, 2001; 22: 4
(林晓娉, 张勇, 谷南驹, 孟昭伟, 马晓丽. 材料热处理学报, 2001; 22: 4)
[32] Sandvik B P J, Wayman C M. Metall Trans, 1983; 14A:835
[33] Ross N D H, Crocker A G. Acta Metall, 1970; 18: 405
[34] Kelly P M. Mater Trans, 1992; 33: 235
[35] Moritani T, Miyajima N, Furuhara T, Maki T. Scr Mater, 2002; 47: 193
[36] Ogawa K, Kajiwara S. Philos Mag, 2004; 84: 2919
[37] Zhang W Z, Weatherly G C. Acta Mater, 1998; 46: 1837
[38] Zhang W Z, Weatherly G C. Scr Mater, 1997; 37: 1569
[39] Qiu D, Zhang W Z. Acta Metall Sin, 2005; 41: 897
(邱冬, 张文征. 金属学报, 2005; 41: 897)
[40] Yang P. The Technology of Electron Backscatter Diffraction and Its Application. Beijing: Metallurgical Industry Press, 2007: 55
(杨平. 电子背散射衍射技术及其应用. 北京: 冶金工业出版社, 2007: 55)
[41] Kitahara H, Ueji R, Ueda M. Mater Charact, 2005; 54: 378
[42] Wayman C M. Introduction to the Crystallography of Martensitic Transformations. New York: MacMillan, 1964: 122
[43] Bergeon N, Kajiwara S, Kikuchi T. Acta Mater, 2000; 48:4053

[1] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[2] 张敏,贾芳,程康康,李洁,许帅,仝雄伟. 调质处理对G520钢焊接接头组织及性能的影响[J]. 金属学报, 2019, 55(11): 1379-1387.
[3] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[4] 韦昭召,马骁,张新平. Ni2MnGa合金相界面位错结构及马氏体相变晶体学研究[J]. 金属学报, 2013, 49(2): 187-198.
[5] 顾新福 张文征. 马氏体相变晶体学的简易矢量分析方法[J]. 金属学报, 2011, 47(2): 241-245.
[6] 石章智 张文征. 用相变晶体学指导Mg-Sn-Mn合金优化设计[J]. 金属学报, 2011, 47(1): 41-46.
[7] 吴静 张文征 . 从相变出发理解和计算变体间位向差[J]. 金属学报, 2009, 45(8): 897-905.
[8] 符寒光; 蒋志强 . 耐磨铸造Fe-B-C合金的研究[J]. 金属学报, 2006, 42(5): 545-548 .
[9] 邱冬; 张文征 . 双相不锈钢中表面浮凸的测量与表征[J]. 金属学报, 2005, 41(9): 897-904 .
[10] 梁益龙;雷旻;钟蜀辉;江山. 板条马氏体钢的断裂韧性与缺口韧性、拉伸塑性的关系[J]. 金属学报, 1998, 34(9): 950-958.
[11] 薄祥正;方鸿生. 仿晶型铁素体表面浮凸的扫描隧道显微镜研究[J]. 金属学报, 1998, 34(8): 807-812.
[12] 薄祥正;方鸿生;王家军;王峥华. 魏氏组织表面浮突的扫描隧道显微镜研究[J]. 金属学报, 1998, 34(4): 345-350.
[13] 薄祥正;徐宁;方鸿生. 锯齿状魏氏组织表面浮凸的扫描隧道显微镜研究[J]. 金属学报, 1998, 34(12): 1249-1254.
[14] 罗承萍;许麟康;查健中. 300M超高强度钢板条马氏体的晶体学研究[J]. 金属学报, 1993, 29(7): 28-33.