Please wait a minute...
金属学报  2009, Vol. 45 Issue (11): 1314-1319    
  论文 本期目录 | 过刊浏览 |
变形温度对含Nb双相钢显微组织的影响
董毅; 许云波; 吴迪
东北大学轧制技术及连轧自动化国家重点实验室; 沈阳 110004
EFFECT OF DEFORMATION TEMPERATURE ON THE MICROSTRUCTURE OF Nb-MICROALLOYED DUAL PHASE STEEL
DONG Yi;  XU Yunbo; WU Di
State Key Laboratory of Rolling and Automation; Northeastern University; Shenyang 110004
引用本文:

董毅 许云波 吴迪. 变形温度对含Nb双相钢显微组织的影响[J]. 金属学报, 2009, 45(11): 1314-1319.
, . EFFECT OF DEFORMATION TEMPERATURE ON THE MICROSTRUCTURE OF Nb-MICROALLOYED DUAL PHASE STEEL[J]. Acta Metall Sin, 2009, 45(11): 1314-1319.

全文: PDF(1203 KB)  
摘要: 

通过单道次压缩及连续冷却实验, 研究了变形温度(810-720 ℃)对具有超细原始奥氏体晶粒的含Nb双相钢显微组织的影响. 实验结果表明: 实验钢最终组织为铁素体加马氏体的双相组织. 压缩过程中, 实验钢应力-应变曲线上出现峰值, 且峰值应力随变形温度的降低先增大后减小; 随着变形温度的降低, 铁素体的含量先增大再减小, 但增减幅度不大, 在最低变形温度(720 ℃)时, 铁素体晶粒尺寸降低到2.8 μm, 弥散分布于铁素体晶界上的马氏体含量达到22.7%; 随着变形温度的增加, 铁素体晶粒硬度减小, 最低可降至230 GPa; EBSD取向分析显示, 随着变形温度的降低, 组织中小角度晶界增多.

关键词 含Nb钢超细晶低温区变形晶粒取向图    
Abstract

Previous researches indicated that the mechanical property of dual phase steel is not only depended on the volume fractions and grain sizes of ferrite and martensite but also the morphology and distribution of martensite island. Therefore, it is desired to obtain dispersive distribution of fine martensite islands in the matrix of fine grained ferrite. Generally, there are two methods to refine ferrite grain. First, γ/α dynamic transformation is promoted by increasing austenite free energy through heavy deformation at low temperature region. Second, fine ferrite grain is achieved by refining the initial austenite grain which can be obtained by microalloying, recrystallizing and cyclic heat treatment. In this paper, a low carbon Nb-microalloyed steel was cyclic-heat-treated to obtain 4.2 μm sized initial austenite grain and then cooled to different temperatures (810-720 ℃) to compressively deform. The effects of deformation temperature on flow stress curve, and the morphologies and distributions of ferrite and martensite island, two constituted phases in the steel, were investigated. The flow stress curves possess peak stress which increases first and then decreases with decreasing of deformation temperature. And the volume fraction of ferrite also decreases first and then increases with decreasing of deformation temperature, but the change is slight. At the lowest deformation temperature of 720 ℃, the size of ferrite grain was decreased to 2.8 μm and the volume fraction of fine martensite island which is dispersively distributed around the boundaries of ferrite was increased up to 22.7%. The inhomogeneity of the hardness of ferrite grains lowers with increasing of deformation temperature, and the hardness approaches a small stable value at last. The EBSD orientation maps show that the fraction of low angle grain boundary increases with decreasing of deformation temperature.

Key wordsNb-microalloyed steel    ultrafine grain    deformed in low temperature region    orientation map of grain
收稿日期: 2009-05-14     
ZTFLH: 

TG142.1

 
基金资助:

国家自然科学基金项目50504007和国家科技支撑计划项目2007BAE51B07资助

作者简介: 董毅, 男, 1981年生, 博士生

[1] Shi M F, Thomas G H, Chen M X, Fekete J R. Iron Steelmaker, 2002; 29(3): 27
[2] Llewellyn D T, Hillis D J. Ironmaking Steelmakeing, 1996; 23: 471
[3] Erdogan M, Tekeli S. Mater Des, 2002; 23: 597
[4] Li S X, Li G Y, Weng Y Q. Z Metallkd, 2004; 29: 115
[5] Adamczyk J, Grajcar A. J Mater Process Technol, 2005; 162–163: 267
[6] Mousavi Anijdan S H, Vahdani H. Mater Lett, 2005; 59: 1828
[7] Lis J, Lis A K, Kolan C. J Mater Process Technol, 2005; 162–163: 350
[8] Xu H W, Yang W Y, Sun Z Q, Wang X T. Trans Mater Heat Treat, 2008; 29(2): 60
(徐海卫, 杨王玥 , 孙祖庆, 王西涛. 材料热处理学报, 2008; 29(2): 60)

[9] Eghbali B, Abdollah–zadeh A. Mater Process Technol, 2006; 180: 44
[10] Eghbali B, Abdollah–zadeh A. Mater Des, 2007; 28: 1021
[11] Yang P, Fu Y Y, Cui F E, Sun Z Q. Acta Metall Sin, 2001; 37: 601
(杨平, 傅云义, 崔凤娥, 孙祖庆. 金属学报, 2001; 37: 601)
[12] Yang P, Fu Y Y, Cui F E, Sun Z Q. Acta Metall Sin, 2001; 37: 609
(杨平, 傅云义, 崔凤娥, 孙祖庆. 金属学报, 2001; 37: 609)
[13] Dong Y, Xu Y B, Xiao B L, Wu D. J Northeast Univ, 2008; 29: 1431
(董 毅, 许云波, 肖宝亮, 吴迪. 东北大学学报, 2008; 29: 1431)
[14] G´omez M, Medina S F, Quispe A, Valles P. ISIJ Int, 2002; 42: 423
[15] Ma L Q, Liu Z Y, Jiao S H, Yuan X Q, Wu D. Acta Metall Sin (Engl Lett), 2006; 19: 271

[1] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[2] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[3] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[4] 陈胜虎, 戎利建. 超细晶铁素体-马氏体钢的高温氧化成膜特性及其对Pb-Bi腐蚀行为的影响[J]. 金属学报, 2021, 57(8): 989-999.
[5] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[6] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[7] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[8] 马江南,王瑞珍,杨才福,查小琴,张利娟. 中厚板表层超细晶对止裂性能的影响[J]. 金属学报, 2017, 53(5): 549-558.
[9] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[10] 潘瑜, 张殿涛, 谭雨宁, 李珍, 郑玉峰, 李莉. 等通道挤压制备医用超细晶Mg-3Sn-0.5Mn合金及其力学性能[J]. 金属学报, 2017, 53(10): 1357-1363.
[11] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[12] 王庆娟,周晓,梁博,周滢. 超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制*[J]. 金属学报, 2016, 52(11): 1477-1483.
[13] 朴楠,陈吉,尹成江,孙成,张星航,武占文. 超细晶304L不锈钢在含Cl-溶液中点蚀行为的研究[J]. 金属学报, 2015, 51(9): 1077-1084.
[14] 刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
[15] 韩啸,陈吉,孙成,武占文,吴新春,张星航. 块体超细晶304L不锈钢的腐蚀及钝化性能的研究[J]. 金属学报, 2013, 49(3): 265-270.