Please wait a minute...
金属学报  2008, Vol. 44 Issue (11): 1348-1353     
  论文 本期目录 | 过刊浏览 |
疲劳裂纹扩展两参量驱动力的一个新模型
熊缨
浙江工业大学机电工程学院过程装备与控制工程系
A TWO-PARAMETER DRIVING FORCE FOR FATIGUE CRACK GROWTH
XIONG Ying
浙江工业大学
引用本文:

熊缨 . 疲劳裂纹扩展两参量驱动力的一个新模型[J]. 金属学报, 2008, 44(11): 1348-1353 .
. A TWO-PARAMETER DRIVING FORCE FOR FATIGUE CRACK GROWTH[J]. Acta Metall Sin, 2008, 44(11): 1348-1353 .

全文: PDF(3424 KB)  
摘要: 

在考虑载荷循环中裂纹尖端塑性变形导致柔度变化的基础上, 对结构钢SM400B进行了疲劳测试. 提出了基于两参量修正的裂纹驱动力模型: ΔK rm drive=(K max)n(ΔK^)1-n. 在预测应力比对裂纹扩展速率的影响时, 该模型比文献中报道的ΔK=K max-K min, ΔK eff=K max-K op和Δ K*=(K max)α(Δ K+)1-α更有效

关键词 迟滞回线柔度疲劳裂纹扩展裂纹尖端    
Abstract

Most of the previous parameters that utilized as a crack driving force were established in modifying the parameter Kop in Elber’s effective SIF range (ΔKeff =Kmax–Kop). This paper focuses on the physical meaning of compliance changes caused by plastic deformation at the crack tip, the test were carried out under constant amplitude loading by using structural steel, and differences of several parameter ΔKeff from literature were analyzed. The effect of actual stress (load) amplitude at the crack tip on fatigue crack growth is investigated based on these test results, and improved two-parameter driving force model ΔKdrive=(Kmax)n(ΔK^)1-n has been proposed. Experimental data for several different types of materials taken from literature were used in the analyses. Presented results indicate that new parameter ΔKdrive was equally effective or better than ΔK(=Kmax-Kmin), ΔKeff(=Kmax-Kop) and ΔK*(=(Kmax)α(ΔK+)1-α) in correlating and predicting the R-ratio effects on fatigue crack growth rate.

Key wordsHysteresis loop    Compliance    Fatigue crack growth    Crack tip    Opening/closure    Crack driving force
收稿日期: 2008-02-01     
ZTFLH: 

TF777.1

 
[1]Elber W.Damage Tolerance in Aircraft Structures. Philadelphia:ASTM STP 486,1971:230
[2]Nisitani H,Chen D H.Trans Jpn Soc Mech Eng,1985;51: 1436
[3]Donald J K.Int J Fatigue,1999;21:S47
[4]Lang M.Fatigue Fract Eng Mater Struct,2002;23:587
[5]Marci G.Fracture Mechanics.Philadelphia:ASTM STP 677,1979:168
[6]Toyosada M,Niwa T.Int J Fracture,1994;67:217
[7]Donald K,Paris P C.Int J Fatigue,1999;21:S47
[8]Kujawski D.Int J Fatigue,2001;23:S239
[9]Noroozi A H,Glinka G,Lambert S.Int J Fatigue,2005; 27:1277
[10]Kikukawa M,Jono M,Tanaka K,Takatani M.J Soc Mater Sci,1976;25:899
[11]Xiong Y,Katsuta J,Sakiyama T,Kawano K.Fatigue Fract Eng Mater Struct,2006;29:454
[12]Toyosada M,Niwa T,Yamaguchi K,Takenaka H,Aramaki N,Masaki H.Jpn Soc Nay Archit,1992;172:589
[13]Dugdale D S.J Mech Phys Solids,1960;8:100
[14]Zheng J,Powell B E.Int J Fatigue,1999;21:507
[15]Schijve J.Eng Fract Mech,1981;14:461
[16]Kumar R,Singh K.Eng Fract Mech,1995;50:3777
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[3] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[4] 陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
[5] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[6] 徐超, 佴启亮, 姚志浩, 江河, 董建新. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460.
[7] 毕宗岳,杨军,牛靖,张建勋. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5): 576-582.
[8] 杨健,董建新,张麦仓,贾建,陶宇. 新型镍基粉末高温合金FGH98的高温疲劳裂纹扩展行为研究[J]. 金属学报, 2013, 49(1): 71-80.
[9] 生海,董超芳,肖葵,李晓刚. 高强铝合金裂纹尖端在3.5NaCl溶液中的微区电化学特性[J]. 金属学报, 2012, 48(4): 414-419.
[10] 熊缨 陈冰冰 郑三龙 高增梁. 16MnR钢在不同条件下的疲劳裂纹扩展规律[J]. 金属学报, 2009, 45(7): 849-855.
[11] 马英杰; 刘建荣; 雷家峰; 李玉兰; 刘羽寅; 杨锐 . 钛合金疲劳裂纹扩展速率Paris区中的转折点[J]. 金属学报, 2008, 44(8): 973-978 .
[12] 于慧臣; 孙燕国; 张岩基; 谢世殊; 田中启介 . 不锈钢在扭转/拉伸复合载荷下近门槛值的疲劳裂纹扩展行为[J]. 金属学报, 2006, 42(2): 186-190 .
[13] 于慧臣; 张岩基; 孙燕国; 谢世殊; 田中启介 . 不锈钢在循环扭转载荷下近门槛值的疲劳裂纹扩展行为[J]. 金属学报, 2005, 41(7): 721-726 .
[14] 钟勇; 肖福仁; 单以银; 杨柯 . 管线钢的疲劳裂纹扩展速率与疲劳寿命关系的研究[J]. 金属学报, 2005, 41(5): 523-528 .
[15] 王章忠; 杜百平; 李年 . 不同类型过载下I型疲劳裂纹的扩展行为[J]. 金属学报, 2003, 39(8): 843-847 .