Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 414-419    DOI: 10.3724/SP.J.1037.2011.00692
  论文 本期目录 | 过刊浏览 |
高强铝合金裂纹尖端在3.5NaCl溶液中的微区电化学特性
生海,董超芳,肖葵,李晓刚
北京科技大学腐蚀与防护中心教育部腐蚀与防护重点实验室, 北京 100083
LOCALIZED ELECTROCHEMICAL CHARACTERIZATION OF HIGH STRENGTH ALUMINIUM ALLOY AT THE CRACK TIP IN 3.5NaCl SOLUTION
SHENG Hai, DONG Chaofang, XIAO Kui, LI Xiaogang
Key Laboratory of Corrosion and Protection, Ministry of Education, Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
引用本文:

生海,董超芳,肖葵,李晓刚. 高强铝合金裂纹尖端在3.5NaCl溶液中的微区电化学特性[J]. 金属学报, 2012, 48(4): 414-419.
, , , . LOCALIZED ELECTROCHEMICAL CHARACTERIZATION OF HIGH STRENGTH ALUMINIUM ALLOY AT THE CRACK TIP IN 3.5NaCl SOLUTION[J]. Acta Metall Sin, 2012, 48(4): 414-419.

全文: PDF(747 KB)  
摘要: 采用毛细管微电极测试方法、扫描Kelvin探针技术和数值分析方法,对2024-T351高强铝合金裂纹尖端在3.5NaCl溶液中的微区电化学特性和腐蚀行为进行了研究. 结果表明, 裂纹尖端的腐蚀电位较远离裂纹尖端的基体位置更负, 裂纹尖端处的电化学活性明显增加. 在外加应力的作用下,裂纹尖端处表面氧化膜的厚度减薄, 其稳定性和保护性变弱. 裂纹尖端处优先发生阳极溶解, 浸泡24 h后在裂纹尖端处出现腐蚀产物的堆积.由于腐蚀电位和电化学活性的差异, 在裂纹尖端(阳极)和远离裂纹尖端的基体(阴极)之间可形成电偶对, 进一步促进裂纹尖端局部区域内腐蚀过程的进行.
关键词 2024-T351铝合金毛细管微电极扫描Kelvin探针微区电化学裂纹尖端    
Abstract:The electrochemical microcapillary technique and scanning Kelvin probe (SKP) were applied to study the localized electrochemical characterization and corrosion behavior at the crack tip of 2024-T351 aluminium alloy in 3.5NaCl. To investigate the effect of stress on the localized corrosion process at the crack tip, numerical simulation of the stress distribution on a pre-cracked wedge-open loading (WOL) specimen was conducted using a commercial software package ABAQUS 6.10. Polarization curves revealed that corrosion potential at the crack tip was more negative than that within the region away from the crack tip. Localized electrochemical impedance spectroscope (EIS) showed that the passive film was thinner at the crack tip than within the region away from the crack tip. The results indicate that the crack tip is more electrochemically active than the region away from the crack tip. Furthermore, passive film at the crack tip was less stable than that on other region of the specimen surface. SKP measurements demonstrated that there was a non-uniform distribution of Volta potential on the pre-cracked WOL specimen surface, with a more positive Volta potential occurring at the crack tip after 24 h immersion into 3.5NaCl solution. This might be explained by the preferential anodic dissolution and the accumulation of the corrosion product at the crack tip. Numerical simulation results showed that a very high local stress concentration was developed at the crack tip, which could enhance the electrochemical activity around the crack tip and promote the dissolution process therein. Moreover, a galvanic couple could also occur between the crack tip acting as the anode and the distant region as the cathode, which results from the differences of the corrosion potentials and the electrochemical activities between them. As a result, the anodic dissolution of 2024-T351 aluminium alloy at the crack tip is enhanced.
Key words2024-T351 aluminium alloy    microcapillary    scanning Kelvin probe (SKP)    localized electrochemistry    crack tip
收稿日期: 2011-11-07     
ZTFLH: 

TG174.3,O646.6

 
基金资助:

国家自然科学基金项目51131005, 51171025和5113005以及中央高校基本科研业务费专项资金项目FRF-BR-10-037B资助

作者简介: 生海, 男, 1984年生, 博士生
[1] Starke E A, Staley J T.  Prog Aerosp Sci, 1996; 32: 131

[2] Immarigeon J P, Holt R T, Koul A K, Zhao L, Wallace W, Beddoes J C.  Mater Charact, 1995; 35: 41

[3] Szklarska-Smialowska Z.  Corros Sci, 1999; 41: 1743

[4] Gupta R K, Sukiman N L, Cavanaugh M K, Hinton B R W,Hutchinson C R, Birbilis N.  Electrochim Acta, 2012; 66: 245

[5] Ruan S, Wolfe D A, Frankel G S.  J Stat Plann Inference,2004; 126: 553

[6] Knight S P, Salagaras M, Trueman A R.  Corros Sci,2011; 53: 727

[7] Speidel M.  Metall Mater Trans, 1975; 6A: 631

[8] Lee H, Kim Y, Jeong Y, Kim S.  Corros Sci, 2012; 55: 10

[9] Vogt H, Speidel M O.  Corros Sci, 1998; 40: 251

[10] Liu X D, Frankel G S, Zoofan B, Rokhlin S I. Corros Sci, 2007; 49: 139

[11] Liu X D, Frankel G S, Zoofan B, Rokhlin S I. Corros Sci, 2004; 46: 405

[12] Cooper K R, Kelly R G.  Corros Sci, 2007; 49: 2636

[13] Moon S M, Pyun S I.  Electrochim Acta, 1999; 44: 2445

[14] Zhang B, Li Y, Wang F H.  Corros Sci, 2007; 49: 2071

[15] Huang V M W, Wu S L, Orazem M E, Pebere N, Tribollet B,Vivier V.  Electrochim Acta, 2011; 56: 8048

[16] Rohwerder M, Turcu F, Lamaka S V, Zheludkevich M L, Yasakau K A,Montemor M F, Ferreira M G S.  Electrochim Acta, 2007; 53: 290

[17] Rossi S, Fedel M, Deflorian F, del Carmen Vadillo M. C R Chim, 2008; 11: 984

[18] Nazarov A, Thierry D.  Electrochim Acta, 2007; 52: 7689

[19] Bohni H, Suter T, Schreyer A.  Electrochim Acta, 1995; 40: 1361

[20] Lohrengel M M, Moehring A, Pilaski M.  Electrochim Acta,2001; 47: 137

[21] Klemm S O, Kollender J P, Hassel A W.  Corros Sci, 2011; 53: 1

[22] Breimesser M, Ritter S, Seifert H P, Virtanen S, Suter T. Corros Sci, 2012; 55: 126

[23] Jorcin J B, Krawiec H, Pebere N, Vignal V.  Electrochim Acta,2009; 54: 5775

[24] Krawiec H, Vignal V, Akid R.  Electrochim Acta, 2008; 53: 5252

[25] Burleigh T D, Smith A T.  J Electrochem Soc, 1991; 138: L34

[26] Schmutz P, Frankel G S.  J Electrochem Soc, 1998; 145: 2285

[27] Zhang G A, Cheng Y F.  Corros Sci, 2010; 52: 960

[28] Dong C F, Sheng H, An Y H, Li X G, Xiao K, Cheng Y F.Prog Org Coat, 2010; 67: 269
[1] 舒韵, 闫茂成, 魏英华, 刘福春, 韩恩厚, 柯伟. X80管线钢表面SRB生物膜特征及腐蚀行为[J]. 金属学报, 2018, 54(10): 1408-1416.
[2] 康举,李吉超,冯志操,邹贵生,王国庆,吴爱萍. 2219-T8铝合金搅拌摩擦焊接头力学和应力腐蚀性能薄弱区研究*[J]. 金属学报, 2016, 52(1): 60-70.
[3] 丁康康, 肖葵, 邹士文, 董超芳, 赵瑞涛, 李晓刚. PCB-HASL电路板在NaHSO3/Na2SO3溶液中的腐蚀电化学行为[J]. 金属学报, 2014, 50(10): 1269-1278.
[4] 毕宗岳,杨军,牛靖,张建勋. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5): 576-582.
[5] 邹士文,李晓刚,董超芳,李慧艳,肖葵. 霉菌对裸铜和镀金处理的印制电路板腐蚀行为的影响[J]. 金属学报, 2012, 48(6): 687-695.
[6] 孙敏 肖葵 董超芳 李晓刚 钟平. 带腐蚀产物超高强度钢的电化学行为[J]. 金属学报, 2011, 47(4): 442-448.
[7] 王力伟 杜翠薇 刘智勇 曾笑笑 李晓刚. Fe3C和珠光体对低碳铁素体钢腐蚀电化学行为的影响[J]. 金属学报, 2011, 47(10): 1227-1232.
[8] 熊缨 . 疲劳裂纹扩展两参量驱动力的一个新模型[J]. 金属学报, 2008, 44(11): 1348-1353 .
[9] 李志成; 刘路; 吴昕; 贺连龙; 徐永波 . 脆性材料中的微裂纹尖端结构与断裂[J]. 金属学报, 2001, 37(5): 503-506 .
[10] 钱才富 . 位错和位错偶沿单一滑移系从裂纹尖端的发射[J]. 金属学报, 1999, 35(5): 546-550 .
[11] P.B.HirschFRS. 脆-韧转变的模型化(英文)[J]. 金属学报, 1997, 33(3): 225-232.
[12] 郑冶沙;王中光;艾素华. 疲劳裂纹尖端的位错结构[J]. 金属学报, 1995, 31(3): 105-114.
[13] 魏学军;李劲;周向阳;柯伟. 阳极电流对纯铜裂尖表面形变和总体形变影响的对比[J]. 金属学报, 1994, 30(21): 393-397.
[14] 姚可夫;唐迺泳;陈南平. 裂纹尖端局部形变带的TEM观察[J]. 金属学报, 1991, 27(6): 1-8.
[15] 姚可夫;唐迺泳;陈南平. 双相不锈钢中裂纹尖端塑性变形行为的透射电镜原位观察[J]. 金属学报, 1989, 25(3): 57-62.