Please wait a minute...
金属学报  2008, Vol. 44 Issue (10): 1175-1182     
  论文 本期目录 | 过刊浏览 |
铝基四元合金枝晶组织及微观偏析的数值模拟
戴挺;朱鸣芳;陈双林;曹伟生;洪俊杓
东南大学江苏省先进金属材料高技术研究重点实验室
MODELING OF DENDRITIC STRUCTURE AND MICROSEGREGATION IN SOLIDIFICATION OF AL-RICH QUATERNARY ALLOYS
Dai Ting;Mingfang ZHU;Shuanglin CHEN;Weisheng CAO;Chunpyo HONG
东南大学材料科学与工程学院
引用本文:

戴挺; 朱鸣芳; 陈双林; 曹伟生; 洪俊杓 . 铝基四元合金枝晶组织及微观偏析的数值模拟[J]. 金属学报, 2008, 44(10): 1175-1182 .
, , , , . MODELING OF DENDRITIC STRUCTURE AND MICROSEGREGATION IN SOLIDIFICATION OF AL-RICH QUATERNARY ALLOYS[J]. Acta Metall Sin, 2008, 44(10): 1175-1182 .

全文: PDF(5080 KB)  
摘要: 建立了基于元胞自动机(CA)和热力学相平衡计算引擎(PanEngine)的二维耦合模型, 并应用于铝 基四元合金枝晶组织和微观偏析的数值模拟. 在该耦合模型中, 采用CA方法模拟枝晶组织的演变. 以固/液界面的平衡液相线温度和实际温度的差值作为枝晶生长的驱动力, 同时考虑了固/液界面曲率的Gibbs-Thomson效应. 通过求解溶质传输方程获得固/液界面处三种溶质的液相成分, 耦合PanEngine获得固/液界面处的平衡液相线温度及三种溶质的平衡固相成分. 为提高计算效率, 采用预制数据表格的优化策略将CA与PanEngine进行耦合. 将Al-4.5Cu-0.5Mg-1Si(质量分数, %)四元合金凝固时的固相分数随温度的变化以及固相分数和固相成分分布关系的模拟结果与Scheil模型和平衡凝固模型的预测结果进行了对比, 结果表明, 该模型不仅可应用于模拟多元合金中的枝晶生长形貌, 而且能对铝基四元合金系凝固的微观偏 析进行定量预测.
关键词 数值模拟元胞自动机PanEngine    
Abstract:A two-dimensional (2-D) coupled cellular automaton (CA)-PanEngine model is developed for the simulation of dendritic growth and microsegregation formation in solidification of quaternary alloy system. In the model, the CA approach is employed to describe dendritic growth. The dynamics of dendritic growth is calculated according to the difference between the local equilibrium liquidus temperature and local actual temperature, incorporating with the Gibbs–Thomson effect. Based on the local liquid compositions of three solutes, which are determined by solving the solutal transport equation in the domain, the local equilibrium liquidus temperature and equilibrium solid concentrations of three solutes at the solid/liquid (SL) interface are evaluated with the aid of a thermodynamic phase equilibrium calculation package PanEngine. To reduce computation time, a data tabulation coupling strategy between CA and PanEngine is adopted. The model is validated through the comparisons of simulated results with the predictions of the Scheil model and the equilibrium model for the evolution of solid fraction with the decrease of temperature and for the solid composition profiles as a function of solid fraction in an Al-4.5wt%Cu-0.5wt%Mg-1wt%Si alloy. It is demonstrated that the present model can be used to simulate the evolution of dendritic growth morphology and to quantitatively predict the microsegregation patterns in solidification of quaternary Al-rich alloys.
Key words
收稿日期: 2008-02-18     
ZTFLH:  TG244  
[1]Hecht U,Granasy L,Pusztai T,Bottger B,Apel M,Wi- tusiewicz V,Ratke L,De Wilde J,Froyen L,Camel D, Drevet B,Faivre G,Fries S G,Legendre B,Rex S.Mater Sci Eng,2004;R46:1
[2]Xie F Y,Kraft T,Zuo Y,Moon C H,Chang Y A.Acta Mater,1999;47:489
[3]Yan X,Chen S,Xie F,Chang Y A.Acta Mater,2002;50: 2199
[4]Xie F Y,Yan X Y,Ding L,Zhang F,Chen S L,Chu M G,Chang Y A.Mater Sci Eng,2003;A355:144
[5]Ohsasa K,Nakaue S,Kudoh M,Narita T.ISIJ Int,1995; 35:629
[6]Ode M,Lee J S,Kim S G,Kim W T,Suzuki T.ISIJ Int, 2000;40:870
[7]Kobayashi H,Ode M,Kim S G,Kim W T,Suzuki T.Scr Mater,2003;48:689
[8]Grafe U,Bottger B,Tiaden J,Fries S G.Scr Mater,2000; 42:1179
[9]Cha P R,Yeon D H,Yoon J K.Acta Mater,2001;49: 3295
[10]Zhang R J,Jing T,Jie W Q,Liu B C.Acta Mater,2006; 54:2235
[11]Jacot A,Rappaz M.Acta Mater,2002;50:1909
[12]Jarvis D J,Brown S G R,Spittle J A.Mater Sci Technol, 2000;16:1420
[13]Lee P D,Chirazi A,Atwood R C,Wang W.Mater Sci Eng,2004;A365:57
[14]Miettinen J.Metall Mater Trans,2000;31B:365
[15]Bottger B,Grafe U,Ma D,Fries S G.Mater Sci Technol, 2000;16:1425
[16]Yang B J,Stefanescu D M,Leon-Torres J.Metall Mater Trans,2001;32A:3065
[17]Nastac L.Acta Mater,1999;47:4253
[18]Zhu M F,Hong C P.ISIJ Int,2001;41:436
[19]Wang W,Lee P D,McLean M.Acta Mater,2003;51:2971
[20]Yu J,Xu Q Y,Cui K,Liu B C.Acta Metall Sin,2007;43: 731 (于靖,许庆彦,崔锴,柳百成.金属学报,2007;43:731)
[21]Belteran-Sanchez L,Stefanescu D M.Metall Mater Trans, 2004;35A:2471
[22]Zhu M F,Chert S L,Xie F Y,Hong C P,Chang Y A.Trans Nonferrous Metals Soc China,2006;16(Suppl.2):s180
[23]Zhu M F,Cao W,Chen S L,Hong C P,Chang Y A.J Phase Equilib Diffus,2007;28:130
[24]Chen S L,Daniel S,Zhang F,Chang Y A,Yan X Y,Xie F Y,Schrnid-Fetzer R,Oates W A.Calphad,2002;26:175
[25]Wheeler A A,Boettinger W J,McFadden G B.Phys Rev, 1992;45A:7424
[26]Gránásy L,Pusztai T,Warren J A,Douglas J F,B(?)rzs(?)nyi T,Ferreiro V.Nature Mater,2003;2:92
[27]Brandes E A,Brook G B.Smithells Metals Reference Book.7 Ed.,Berlin:Butterworth-Heinemann Publishing, 1997:1794
[28]Ramirez J C,Beckermann C.Acta Mater,2005;53:1721
[29]Shin Y H,Hong C P.ISIJ Int,2002;42:359
[30]Boettinger W J,Warren J A,Beckermann C,Karma A. Annu Rev Mater Res,2002;32:163
[1] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[5] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] 胡龙, 王义峰, 李索, 张超华, 邓德安. 基于SH-CCT图的Q345钢焊接接头组织与硬度预测方法研究[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] 李子晗, 忻建文, 肖笑, 王欢, 华学明, 吴东升. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693-702.
[8] 杨勇, 赫全锋. 高熵合金中的晶格畸变[J]. 金属学报, 2021, 57(4): 385-392.
[9] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] 刘继召, 黄鹤飞, 朱振博, 刘阿文, 李燕. 氙离子辐照后Hastelloy N合金的纳米硬度及其数值模拟[J]. 金属学报, 2020, 56(5): 753-759.
[11] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[12] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] 戴培元,胡兴,逯世杰,王义峰,邓德安. 尺寸因素对2D轴对称模型计算不锈钢管焊接残余应力精度的影响[J]. 金属学报, 2019, 55(8): 1058-1066.
[14] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[15] 张清东, 林潇, 刘吉阳, 胡树山. Q&P钢热处理过程有限元法数值模拟模型研究[J]. 金属学报, 2019, 55(12): 1569-1580.