Please wait a minute...
金属学报  2007, Vol. 43 Issue (12): 1282-1286     
  论文 本期目录 | 过刊浏览 |
碳纤维表面SiO2涂层的制备及其在镁基复合材料中的应用
李坤;裴志亮;宫骏;石南林;孙超
中国科学院金属所
FABRICATION AND PROPERTIES OF SiO2 COATING ON CARBON FIBRE
Li Kun;;;;
中国科学院金属所
引用本文:

李坤; 裴志亮; 宫骏; 石南林; 孙超 . 碳纤维表面SiO2涂层的制备及其在镁基复合材料中的应用[J]. 金属学报, 2007, 43(12): 1282-1286 .
, , , , . FABRICATION AND PROPERTIES OF SiO2 COATING ON CARBON FIBRE[J]. Acta Metall Sin, 2007, 43(12): 1282-1286 .

全文: PDF(1227 KB)  
摘要: 利用Sol-Gel方法, 通过优化溶胶的配置、纤维提拉过程和干燥烧结等工艺过程,在碳纤维表面制备出均匀的、无裂纹的SiO2涂层. 采用SEM、XPS和TEM表征了碳纤维表面SiO2涂层的结构、形貌、元素分布以及涂层碳纤维/镁基体的界面结构. 结果表明, 涂覆SiO2的碳纤维, 抗氧化能力提高, 拉伸性能略有降低, 但与镁基体复合后其拉伸强度降低了20%. SiO2涂层改善了Mg对碳纤维的润湿能力, 有效地促进了熔融Mg液对碳纤维的浸渗.
关键词 溶胶-凝胶SiO2涂层碳纤维镁基复合    
Abstract:A Sol-Gel method was applied to fabricate SiO2 coating on the surface of carbon fibre. By controlling the component of the Sol, the dipping speed, the heating and sintering processes, a crack-free SiO2 coating was obtained. SEM and XPS were used to characterize the structure, morphology and elemental distribution of SiO2 coating, also the interface between carbon fibre and magnesium matrix was characterized by TEM. The oxidation resistance and mechanical properties of carbon fibre with and without SiO2 coating were investigated, the results showed that SiO2 coating enhanced the oxidation resistance ability of carbon fibre, and also SiO2 coating had little influence on its mechanical properties. However, the tensile strength of coated carbon fibre had degraded to 80% after embedded in Mg matrix. Carbon fibre reinforced Mg-based (Cf/Mg) composite was fabricated by gas pressure infiltration process and the results indicated that SiO2 coating could effectively promote the wetting between the molten Mg and carbon fibre.
Key wordsSol-Gel    SiO2 coating    Carbon fibre    Cf/Mg composite
收稿日期: 2007-02-12     
ZTFLH:  TG174.4  
[1]Thakur S K,Dhindaw B K,Hort N,Kainer K U.Metall Mater Trans,2004;35A:1167
[2]Suraj P R.Surf Interface Anal,2001;31:692
[3]Russell-Stevens M,Todd R,Papakyriacou M.Surf Inter- face Anal,2005;37:336
[4]Amateau M F.J Compos Mater,1976;10:279
[5]Kaztman H A.J Mater Sci,1987;22:144
[6]Huang J F.The Sol-Gel Theory and Technology.Beijing: Chemical Industry Press,2005:133 (黄剑锋.溶胶-凝胶原理与技术.北京:化学工业出版社,2005:133)
[7]Baklanova N I,Zima T M,Boronin A I,Kosheev S V, Titov A T,Iseava N V,Graschenkov D V,Solntsev S S. Surf Coat Technol,2006;201:2313
[8]Gao P Z,Wang H J,Jin Z H.J Inorg Mater,2003;18: 849 (高朋召,王红洁,金志浩.无机材料学报,2003;18:849)
[9]Shojiro O,Yotaro M.d Mater Sci,1979;14:831
[10]Viala J C,Fortier P,Claveyrolas G,Vincent H,Bouix J. J Mater Sci,1991;26:4977
[1] 谷瑞成, 张健, 张明阳, 刘艳艳, 王绍钢, 焦大, 刘增乾, 张哲峰. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能[J]. 金属学报, 2022, 58(7): 857-867.
[2] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.
[3] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[4] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[5] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[6] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[7] 王晓军, 向烨阳, 胡小石, 吴昆. 碳纳米材料增强镁基复合材料研究进展[J]. 金属学报, 2019, 55(1): 73-86.
[8] 范超, 贾清, 崔玉友, 杨锐. 基于溶胶-凝胶法的YAlO3/Ti2AlC复合涂层在干燥与热分解过程中的开裂行为研究[J]. 金属学报, 2018, 54(7): 991-998.
[9] 郑浩然, 陈民芳, 李祯, 由臣, 刘德宝. MgO改性HA对Mg-Zn-Zr/m-HA复合材料组织及性能的影响[J]. 金属学报, 2017, 53(10): 1364-1376.
[10] 潘晓铭,吴俊升,肖葵,高书君,裴礼鸿,田然,李晓刚. 铝合金表面缓蚀自修复疏水性膜层的制备与表征[J]. 金属学报, 2013, 49(9): 1113-1120.
[11] 高茜 孙本哲 祁阳 齐连仲. 溶胶--凝胶法制备的Zn1-xCoxO晶体粉末的结构和磁性行为[J]. 金属学报, 2011, 47(3): 337-343.
[12] 厉英 马北越 王臻明 姜茂发. Na1.4Co2O4基热电材料的溶胶-凝胶法制备及表征[J]. 金属学报, 2011, 47(1): 109-114.
[13] 朱庆振 薛文斌 鲁亮 杜建成 刘贯军 李文芳. (Al2O3-SiO2)sf/AZ91D镁基复合材料微弧氧化膜的制备及电化学阻抗谱分析 制备及电化学阻抗谱分析[J]. 金属学报, 2011, 47(1): 74-80.
[14] 蔡辉 王菲 王亚平 宋晓平 丁秉钧. Si粉表面溶胶-凝胶预处理制备Cu/Si复合材料[J]. 金属学报, 2009, 45(10): 1261-1266.
[15] 宋美慧 宋坚 陈国钦 王宁 武高辉 . 2D Cf/Mg-2.0Re-0.2Zr复合材料的尺寸稳定性[J]. 金属学报, 2009, 45(1): 119-123.