Please wait a minute...
金属学报  2007, Vol. 43 Issue (10): 1082-1090     
  论文 本期目录 | 过刊浏览 |
薄板坯连铸连轧工艺生产的Nb、Ti复合微合金化热轧带钢的强化机制
王瑞珍;章洪涛
钢铁研究总院结构材料研究所; 北京 100081
引用本文:

王瑞珍; 章洪涛 . 薄板坯连铸连轧工艺生产的Nb、Ti复合微合金化热轧带钢的强化机制[J]. 金属学报, 2007, 43(10): 1082-1090 .

全文: PDF(994 KB)  
摘要: 对具有不同屈服强度的薄板坯连铸连轧工艺生产的Nb、Ti复合微合金化热轧板卷059和066进行了全面的组织分析,研究了其强化机制。组织分析表明,两板卷的主要组织均为铁素体组织,但具有高屈服强度的059板卷铁素体呈现出非多边形铁素体特征,其晶粒明显细于066板卷,并具有高的位错密度。两板卷中的析出物特征相同,其中复合型的星形析出物较多,它们的平均尺寸140~150nm, 消耗了钢中50%的Nb。强化机制研究表明,铁素体晶粒细化强化是两板卷的主要强化机制,占总屈服强度的43~46%;无论是低屈服强度还是高屈服强度板卷,析出强化效果微弱,只占总屈服强度的4~6%。位错强化与晶粒细化强化是059板卷具有高屈服强度的原因。
关键词 薄板坯连铸连轧工艺强化机制微合金化    
Abstract:The experimental steel is a kind of Nb、Ti complex microalloyed steel produced by using thin slab casting and direct rolling process. Comprehensive microstructural analyses were conducted and strengthening mechanisms were studied for its two hot rolled coils: coil 059 with higher yield strength and coil 066 with lower yield strength. The results show that both coils mainly consist of ferrite microstructure. The ferrite of coil 059 presents non-ploygonal ferrite morphology which is with finer grain size and higher dislocation density. Both coils have the same precipitation characters. A large number of complex star-like precipitates exist in both coils, which have an average size of 140~150nm and account for 50% Nb of the total. Ferrite grain refinement strengthening is the first mechanism contributing 43~46% to total yield strength. Precipitation strengthening effect is weak, whether in coil 059 with higher yield strength or in coil 066 with lower yield strength, which only accounts for 4~6% of total yield strength. Dislocation strengthening and grain refinement strengthening makes coil 059 with the higher yield strength.
Key wordsthin slab casting and direct rolling    strengthening mechanism    microalloying    microstructure    precipitat
收稿日期: 2006-12-04     
ZTFLH:  TG142.1  
[1]DeArdo A J,Garcia C I,Palmiere E J.ASM Handbook, Vol.4,Heat Treating,Materials Park,OH,ASM Interna- tional,1990:237
[2]Kang Y,Yu H,Wang K,Fu J,Liu D,Wang Z,Li L,Chen G.Proc Int Symp Thin Slab Casting Rolling,Guangzhou, China:The Chinese Society for Metals,2002:313
[3]Baker T N,Li Y,Wilson J A,Craven A J,Crowther D N. Mater Sci Technol,2004;20:720
[4]Wang R,Hua M,Zhang H,Carcia C I.HSLA Steels 2005, Sanya,China,The Chinese Scoiety for Metals,2005:292
[5]Thillou V.Basic Metal Processing Research Institute Re- port,University of Pittsburgh,PA,USA,1997
[6]Ma X.Phys Test Chem Anal.Part B:Chemical Analysis, 1985;21(4):215 (马翔.理化检验化学分册,1985;21(4):215)
[7]Jia Y H,Lu C F,Liu Q B.Metall Anal,2004;24(Suppl): 463 (贾云海,卢翠芬,刘庆斌.冶金分析,2004;24(Suppl):463)
[8]Honeycombe R W K,Smith G M.In:Gifkins R C ed., Int Conf ICSMA 6 Strength Met Alloy,Pergamon Press, 1982:407
[9]Garcia J E.Master Thesis,University of Pittsburgh,2002
[10]Jun H J,Kang K B,Park C G.Scr Mater,2003;49:1081
[11]Yong Q L,Ma M T,Wu B R.Microalloyed Steels—Physical and Mechanical Metallurgy.Beijing:China Ma- chine Press,1989:57 (雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金.北京:机械工业出版社,1989:57)
[12]Ashby M F.Strengthening Methods in Crystals.London: Applied Science Publishers Ltd,1971:137
[13]Gladman T,Dulieu D,Mcivor T D.Proc Int Conf Mi- croalloying'75,New York:Union Carbide Corporation, 1977:32
[14]Hong S G,Jun H J,Kang K B,Park C G.Scr Mater, 2003;48:1201
[15]Garcia C I,Ruiz-Aparicio A,Cho K,Ma Y,Graham C, Vazquez M,Ruiz-Aparicio L.Proc Int Syrup Thin Slab Casting Rolling,Guangzhou,China:The Chinese Society for Metals,2002:397
[16]Kothe A,Kunze J,Backmann G,Mickel C.Mater Sci Forum,1998;284-286:493
[17]Kneissl A C,Garcia C I,DeArdo A J.Proc Int Conf Processing,Microstructure and Properties Microalloyed Other Modern High Strength Low Alloy Steels,Warren- dale,PA:ISS,1991:145
[18]Kejian H,Baker T N.In:Baker T Ned.,Proc Conf Tita- nium Technol Microalloy Steel,London:The Inst Mater, 1997:115
[19]Craven A J,He K,Garvie L A J,Baker T N.Acta Mater, 2000;48:3857
[20]DeArdo A J,Marraccini R,Hua M J,Garcia C I.HSLA Steels 2005,Sanya,China,The Chinese Society for Met- als,2005:23
[21]Fernandez A I,Uranga P,Lopez B,Rodriguez-Ibabe J M. Mater Sci Eng,2003;A361:367
[22]Fernandez A I,Uranga P,Lopez B,Rodriguez-Ibabe J M. ISIJ Int,2000;40:893
[23]de Ardo A J.Conf Proc Niobium Science Technology.Or- lando,Florida,USA:Niobium.2001 Limited,2001:427
[1] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[2] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[3] 王洪伟, 何竹风, 贾楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能[J]. 金属学报, 2021, 57(5): 632-640.
[4] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[5] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[6] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[7] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[8] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[9] 覃嘉宇, 李小强, 金培鹏, 王金辉, 朱云鹏. 碳纳米管(CNTs)增强AZ91镁基复合材料组织与力学性能研究[J]. 金属学报, 2019, 55(12): 1537-1543.
[10] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[11] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[12] 李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.
[13] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[14] 韩克昌,刘一奇,林国强,董闯,邰凯平,姜辛. 宽固溶区过渡金属氮化物MNx (M=Ti, Zr, Hf)硬质薄膜原子尺度强化机制研究*[J]. 金属学报, 2016, 52(12): 1601-1609.
[15] 丁贤飞,刘东方,郑运荣,冯强. B微合金化对HK40合金铸造疏松的影响[J]. 金属学报, 2015, 51(9): 1121-1128.