Please wait a minute...
金属学报  2006, Vol. 42 Issue (9): 952-958     
  论文 本期目录 | 过刊浏览 |
3种高温合金的蠕变-疲劳交互作用行为及寿命预测
陈立佳;吴崴;P.K.Liaw
沈阳工业大学
CREEP-FATIGUE INTERACTION BEHAVIORS AND LIFE PREDICTIONS FOR THREE SUPERALLOYS
CHEN Lijia; WU Wei; P. K. Liaw
沈阳工业大学
引用本文:

陈立佳; 吴崴; P.K.Liaw . 3种高温合金的蠕变-疲劳交互作用行为及寿命预测[J]. 金属学报, 2006, 42(9): 952-958 .
, , . CREEP-FATIGUE INTERACTION BEHAVIORS AND LIFE PREDICTIONS FOR THREE SUPERALLOYS[J]. Acta Metall Sin, 2006, 42(9): 952-958 .

全文: PDF(238 KB)  
摘要: 通过在816和927 ℃下进行总应变控制的不同拉伸应变保持时间的低周疲劳实验,研究了3种高温合金(HAYNES 188, HAYNES 230和HASTELLOY X)的蠕变-疲劳交互作用行为.结果表明,这3种高温合金的应变疲劳寿命主要取决于合金类型、应变保持周期及实验温度. 这些高温合金所表现出的不同应变疲劳寿命行为可归因于蠕变和氧化损伤方面的差异. 此外,应用频率修正的非弹性拉伸应变能作为损伤函数对这3种合金进行了应变疲劳寿命预测,结果显示该寿命预测方法对3种高温合金均表现出较好的寿命预测能力.
关键词 高温合金蠕变-疲劳交互作用应力松弛    
Abstract:The low-cycle fatigue tests with tensile hold times ranging from 0 to 60 min were conducted for 3 superalloys, HAYNES 188, HAYNES 230 and HASTELLOY X, at 816 ℃ and 927 ℃ under a total strain range control mode to investigate their creep-fatigue interaction behaviors. It was found that under creep-fatigue loading condition, the strain fatigue lives of the three superalloys are dependent on the type of the alloy, duration of strain hold, and test temperature. The different strain fatigue life behaviors exhibited by the three superalloys are related to the difference in the damages from creep and oxidation. In addition, the frequency-modified tensile hysteresis energy modeling was used to correlate the present strain fatigue life data. The result showed that this modeling could give a satisfactory prediction on the creep-fatigue lives of the three superalloys.
Key wordssuperalloy    creep-fatigue interaction    stress relaxation
收稿日期: 2005-12-23     
ZTFLH:  TG113.25  
[1]Lord D C,Coffin L F Jr.Metall Trans,1973;4:1647
[2]Merrick H F.Metall Trans,1974;5:891
[3]H.Tsuji H,Kondo T.J Nucl Mater,1987;190:259
[4]Rao K B S,Schiffers H,Schuster H,Nickel H.Metall Trans,1988;19A:359
[5]Rao K B S,Schiffers H,Schuster H,Halford G R.Metall Mater Trans,1996;27A:255
[6]M(?)ndel A,Lang K H,L(?)he D,Macherauch E.Mater Sci Eng,1997;A234-236:715
[7]Wang Z G,Chen L J,Tian J F,Yao G.Met Mater,1990;5:597
[8]ASME Boiler and Pressure Vessel Code,SectionⅢ,Case N47-14.New York:American Society of Mechanical Engineers,1978:105
[9]Manson S S,Halford G R,Hirschberg M H.In:Zamrik S Y,ed.,Symp on Design for Elevated Temperature Environment.New York:American Society of Mechanical Engineers,1971:12
[10]He J R,Duan Z X,Ning Y L,Zhao D.Acta Metall Sin,1985:21:A54
(何晋瑞.段作祥,宁有连,赵迪.金属学报,1985;21:A54)
[11]Coffin L F Jr.In:Curran R W,ed.,Symposium on Creep-Fatigue Interaction.New York:American Society of Mechanical Engineers,1976:349
[12]Ostergren W J.J Test Eval,1976;4:327
[13]Halford G R.J Mater,1996;1:3
[14]Chen L J,Liaw P K,He Y H,Benson M L,Blust J W,Browning P F,Seeley R R,Klarstrom D L.In:Liaw P K,ed.,Proc Syrup on Fatigue and Fracture Behavior of High Temperature Materials,Warrendale:The Minerals,Metals & Materials Society,2000:85
[15]Chen L J,Liaw P K,McDaniels R L,Blust J W,Browning P F,Seeley R R,Klarstrom D L.The International Gas Turbine and Aeroengine Congress and Exhibition.2001-GT-422,New York:The American Society of Mechanical Engineers,2001
[16]Mathew M D,Singh V,Chen W,Wahl R P.Acta Metall Mater,1991;39:1507
[17]Klarstrom D L,Lai G Y.In:Duhl D N,Maurer G,Antolovich S,Lund C,Reichman S,eds.,Superalloys 1988,Warrendale:The Metallurgical Society,1988:585
[18]Berstein H L.Air Force Materials Laboratory Technical Report,AFML TR-79-4075,Dayton,USA,1979
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[7] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[8] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[9] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[10] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[11] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[12] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[13] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[14] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[15] 穆亚航, 张雪, 陈梓名, 孙晓峰, 梁静静, 李金国, 周亦胄. 基于热力学计算与机器学习的增材制造镍基高温合金裂纹敏感性预测模型[J]. 金属学报, 2023, 59(8): 1075-1086.