Please wait a minute...
金属学报  2006, Vol. 42 Issue (5): 449-453     
  论文 本期目录 | 过刊浏览 |
金属直薄壁件激光直接沉积过程的有限元模拟 Ⅰ. 沉积过程中温度场的模拟
高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮
北京有色金属研究总院
Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(1)
引用本文:

高士友; 石力开; 席明哲; 纪宏志; 张永忠; 杜宝亮 . 金属直薄壁件激光直接沉积过程的有限元模拟 Ⅰ. 沉积过程中温度场的模拟[J]. 金属学报, 2006, 42(5): 449-453 .

全文: PDF(1208 KB)  
摘要: 建立了模拟直薄壁件逐点沉积过程中温度场的有限元模型,用等价导热系数和焓值法处理了固-液耦合热传导问题和固液混合区的焓. 模拟结果真实地反映了沉积316L不锈钢直薄壁件的温度场特征. 通过对模拟结果的分析得出, 在高温阶段(700℃以上)熔池的平均冷却速率达到1000 ℃/s数量级, 在240℃以下的冷却速率仅为10 ℃/s数量级. 基板的温度变化经历温度上升、温度平稳、温度下降3个阶段;在温度下降阶段, 基板中的热传导对熔池冷却速率影响很小. 有限元模拟结果与已有文献的实验测量数据吻合很好.
关键词 激光直接沉积金属直薄壁件温度场    
Abstract:Abstract. RP/M is an advance technology based on build-up and discrete idea, and Laser direct deposition by coaxially feeding the powders to laser melting pool is a RM technology in general use. During depositing metallic components the variation and control of temperature field have been priority research problem in the research works all along, and major research object for this problem is simulating real temperature field during the deposition by finite element method. Finite-element model to simulate the temperature field in depositing process of vertical thin wall samples is created, and Solid-liquid coupling thermal conduction problem and heat content within Solid-liquid dilution zone are treated by use of equivalent thermal conductivity and enthalpy potential method in the paper. The simulating results objectively exposure the characteristics on the temperature field during depositing the vertical thin wall samples of 316Lstainless steel. By means of analyzing the simulation results, it is obtained that mean cooling velocity of the melting pool is at 103℃/S order of magnitude in the temperature upward 700℃,and the cooling velocity merely is at 101℃/S order in the temperature upward 240℃. Fluctuating temperature of the substrate undergoes three stages: elevation, stable, descends, and the thermal conduction in the substrate has little influence on the cooling velocity of the melting pool at the descending period. The conformity of the simulating result data with the experimental findings in public literatures is very well.
Key wordsLaser direct deposition    Metallic Vertical thin wall samples    Temperature field    Finite Element Simulat
收稿日期: 2005-09-16     
ZTFLH:  TG142  
[1] Hofmeister W H, Bayuzick R J, Robinson M B. Int J Thermophys, 2000; 10(1): 279
[2] Hofmeister W, Wert M, Smugeresky J, Philliber J, Griffith M, Ensz M. JOM, 1999; 51(7): 79
[3] Hoadley A F A, Rappaz M. Metall Trans, 1992; 23B: 631
[4] Jendrzejewski R, Kreja I, Sliwinsi G. Mater Sci Eng, 2004; A379: 313
[5] Hu D, Kovacevic R. Int J Mack Tools Manuf, 2003; 43: 51
[6] Toyserkani E, Khajepour A, Corbin S. Opt Laser Eng, 2004; 41: 849
[7] Xu B Q. Int J Heat Mass Trans, 2003; 46: 4963
[8] Brockmann R, Dickmann K. Opt Laser Technol, 2003; 35: 115
[9] Hofmeister W, Griffith M, Ensz M, Smugeresky J. JOM, 2001; 53(9): 30
[10] Shawn M K. Master Thesis, Virginia Polytechnic Institute and State University, 2002
[11] Xi M Z. PhD Thesis, University of Science and Technology Beijing, 2002 (席明哲.北京科技大学博士学位论文,2002)
[12] Hoadley A F, Rappaz M, Zimmermann M. Metall Trans, 1991; 22B: 101
[13] Cao Z N. PhD Thesis, Harbin Institute of Technology, 1993 (曹振宁.哈尔滨工业大学博士学位论文,1993)
[14] Wei Y H. Trans Chin Weld Inst, 1999; 21(3): 99 (魏延红.焊接学报,1999;21(3):99)
[15] Levine I N, translated by Li Z F, Zhang Y F, Chu D Y. Physical Chemistry (The last of two volumes). Beijing: Peking University Press, 1987: 35 (Levine I N 著,李芝芬,张玉芬,褚德萤译.物理化学(下册). 北京:北京大学出版社,1987:35)
[16] Griffith M L, Schlinger M E, Harwell L D, Oliver M S, Baldwin M D, Ensz M T, Essien M, Brooks J, Robino C V, Smugeresky J E, Hofmeister W H, Wert M T, Nelson D V. Mater Des, 1999; 20: 107
[17] Hu Y P, Chen C W, Mukherjee K. J Laser Appl, 2000; 12: 126
[18] Hofmeistor W, Wert M, Sumugeresky J, Philliber J A, Griffith M, Ensz M. http://www.tms.org/pubs/journals/ JOM/9907/Hofmeister/Hofmeister-9907.htmlm
[1] 唐海燕, 李小松, 张硕, 张家泉. 基于恒过热控制的感应加热中间包内钢水的流动与传热[J]. 金属学报, 2020, 56(12): 1629-1642.
[2] 刘新华, 付华栋, 何兴群, 付新彤, 江燕青, 谢建新. Cu-Al复合材料连铸直接成形数值模拟研究[J]. 金属学报, 2018, 54(3): 470-484.
[3] 种晓宇, 汪广驰, 杜军, 蒋业华, 冯晶. ZTAp/HCCI复合材料凝固过程中的温度场和热应力的数值模拟[J]. 金属学报, 2018, 54(2): 314-324.
[4] 陈亚东, 郑运荣, 冯强. 基于微观组织演变的DZ125定向凝固高压涡轮叶片服役温度场的评估方法研究*[J]. 金属学报, 2016, 52(12): 1545-1556.
[5] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
[6] 赵博,武传松,贾传宝,袁新. 水下湿法FCAW焊缝成形的数值分析[J]. 金属学报, 2013, 49(7): 797-803.
[7] 徐庆东,林鑫,宋梦华,杨海欧,黄卫东. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49(5): 605-613.
[8] 庞瑞朋,王福明,张国庆,李长荣. 基于3D-CAFE法对430铁素体不锈钢凝固热参数的研究[J]. 金属学报, 2013, 49(10): 1234-1242.
[9] 魏洁 董俊华 柯伟. 热轧螺纹钢化学剂冷却过程温度场的数值模拟及实验研究[J]. 金属学报, 2012, 48(1): 115-121.
[10] 冯明杰 王恩刚 赫冀成. 高速钢复合轧辊连铸复合过程温度场的数值模拟 I. 石墨铸型法[J]. 金属学报, 2011, 47(12): 1495-1502.
[11] 冯明杰 王恩刚 赫冀成. 高速钢复合轧辊连铸复合过程温度场的数值模拟 II. 铜结晶器法[J]. 金属学报, 2011, 47(12): 1503-1512.
[12] 于海岐 朱苗勇. 圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J]. 金属学报, 2008, 44(12): 1465-1473.
[13] 张琦; 王同敏; 李廷举; 金俊泽 . 行波磁场作用下空心管坯的两相凝固数值模拟[J]. 金属学报, 2007, 43(6): 668-672 .
[14] 杨刚; 李宝宽; 于洋; 齐凤升 . 薄板坯连铸结晶器铜板的三维传热分析[J]. 金属学报, 2007, 43(3): 332-326 .
[15] 封小松; 陈彦宾; 李俐群 . 镀锌板激光钎焊温度场的数值模拟[J]. 金属学报, 2006, 42(8): 882-886 .