Please wait a minute...
金属学报  2005, Vol. 41 Issue (9): 999-1003     
  论文 本期目录 | 过刊浏览 |
Cu-Zr-Nb系铜基块体非晶合金的形成
夏俊海 羌建兵 王英敏 王 清 黄火根 董 闯
大连理工大学三束材料改性国家重点实验室及大连理工大学原材料特种制备技术实验室;大连116024
FORMATION OF Cu-BASED BULK AMORPHOUS ALLOY IN THE Cu-Zr-Nb SYSTEM
XIA Junhai; QIANG Jianbing; WANG Yingmin; WANG Qing; HUANG Huogen; DONG Chuang
State Key Laboratory for Materials Modification by Laser; Ion and Electron Beams & Laboratory of Special Processing of Raw Materials; Dalian University of Technology; Dalian 116024
引用本文:

夏俊海; 羌建兵; 王英敏; 王清; 黄火根; 董闯 . Cu-Zr-Nb系铜基块体非晶合金的形成[J]. 金属学报, 2005, 41(9): 999-1003 .
, , , , , . FORMATION OF Cu-BASED BULK AMORPHOUS ALLOY IN THE Cu-Zr-Nb SYSTEM[J]. Acta Metall Sin, 2005, 41(9): 999-1003 .

全文: PDF(184 KB)  
摘要: Cu8Zr3和Cu10Zr7相中存在Cu8Zr5和Cu6Zr5团簇结构,它们与Cu-Zr系的两个深共晶点Cu61.8Zr38.2和Cu56Zr44对应. Cu64Zr36是Cu-Zr二元系具有最大玻璃形成能力的成分点. 依据形成块体非晶的“变电子浓度线判据”,以Cu64Zr36, Cu61.8Zr38.2和Cu56Zr44 3个二元成分为出发点,以Nb元素为第三组元,建立变电子浓度线(Cu64Zr36)100-xNbx, (Cu61.8Zr38.2)100-xNbx和 (Cu56Zr44)100-xNbx. 采用分步熔炼法,由铜模吸铸法制备直径为3 mm的合金棒. 块体非晶的玻璃形成区及玻璃形成能力由XRD和热分析确定. 结果表明, 添加少量Nb(原子分数, x≤3)可以显著提高Cu-Zr二元系的玻璃形成能力. 具有最大Tg/Tl值(0.626)的成分Cu60.3Zr37.2Nb2.5位于具有Cu8Zr5团簇和最深共晶点的Cu61.8Zr38.2向第三组元Nb的连线上. 结合Cu-Zr二元体系的团簇结构讨论了Cu-Zr-Nb系块体非晶的形成.
关键词 块体非晶合金Cu-Zr-Nb合金原子团簇     
Abstract:Two atomic clusters, Cu8Zr5 and Cu6Zr5 derived from the Cu8Zr3 and Cu10Zr7 phase structures, correspond to two deep eutectic compositions of Cu61.8Zr38.2 and Cu56Zr44. Cu64Zr36 is the best glass-forming composition in the Cu-Zr binary system. Three e/a-variant composition lines (Cu64Zr36)100-xNbx, (Cu61.8Zr38.2)100-xNbx and (Cu56Zr44)100-xNbx were constructed in the Cu--Zr--Nb system by linking these three specific compositions with the third constitute Nb. The pure Zr and Nb elements were first melted into interalloys, then the interalloys were melted with Cu, and finally alloy bars with diameter of 3 mm were prepared by copper mould suction casting. Minor Nb additions (atomic fraction, x≤3) can improve remarkably the glass forming abilities of the Cu-Zr alloys. The optimum composition Cu60.3Zr37.2Nb2.5 with the highest Tg/Tl =0.626 is located on the e/a -variant line linking the third element Nb and Cu8Zr5 icosahedral cluster and Cu61.8Zr38.2 which possess the deepest eutectic point. The glass formation relative to clusters in Cu-Zr system is also discussed.
Key wordsbulk amorphous alloy    Cu-Zr-Nb alloy    atomic cluster
收稿日期: 2005-01-20     
ZTFLH:  TG139  
[1] Inoue A, Zhang T, Masumoto T. Mater Trans JIM, 1991; 31: 177
[2] Zhang T, Inoue A, Masumoto T. Mater Trans JIM, 1991; 32: 1005
[3] Peker A, Johnson W L. Appl Phys Lett, 1993; 63: 2342
[4] Kim S G, Inoue A, Masumoto T. Mater Trans JIM, 1991; 31: 929
[5] Bruck H A, Rosakis A J, Johnson W L. J Mater Res, 1996; 11: 503
[6] Gilbert C G, Ritchie R O, Johnson W L. Appl Phys Lett, 1997; 71: 476
[7] Inoue A, Zhang W, Zhang T, Kurosaka K. Acta Mater, 2001; 49: 6645
[8] Inoue A, Zhang W, Zhang T, Kurosaka K. Mater Trans, 2001; 42: 1149
[9] Inoue A, Zhang W. Mater Trans, 2002; 43: 2921
[10] Zhang Y, Zhao D Q, Wang R J, Wang W H. Acta Mater, 2003; 51: 1971
[11] Asami K, Qin C L, Zhang T, Inoue A. Mater Sci Eng, 2004; A375-377: 235
[12] Wang Y M, Shek C H, Qiang J B, Wong C H, Chen W R, Dong C. Scr Mater, 2003; 48: 1525
[13] Wang Y M, Zhang X F, Qiang J B, Wang Q, Wang D H, Li D J, Shek C H, Dong C. Scr Mater, 2004; 50: 829
[14] Wang Y M, Shek C H, Qiang J B, Wong C H, Wang Q, Zhang X F, Dong C. Mater Trans, 2004; 45: 1180
[15] Wang Q, Qiang J B, Wang Y M, Xia J H, Zhang X F, Dong C. Acta Mater, 2005, in press
[16] Inoue A, Zhang W. Mater Trans, 2004; 45: 584
[17] Wang D, Li Y, Sun B B, Sui M L, Lu K, Ma E. Appl Phys Lett, 2004; 84: 4029
[18] Xu D H, Lohwongwatana B, Duan G, Johnson W L, Garland C. Acta Mater, 2004; 52: 2621
[19] Davies H A. In: Cantor B, ed., Rapidly Quenched Metals, Vol.1, Part Ⅲ, London: The Metals Society, 1978: 1
[20] Lu Z P, Tan H, Li Y, Ng S C. Scr Mater, 2000; 42: 667
[21] Wang Y M, Qiang J B, Wong C H, Shek C H, Dong C. J Mater Res, 2003; 18: 642
[22] Wang Q, Wang Y M, Qiang J B, Zhang X F, Wang D H, Dong C. Acta Metall Sin, 2004; 40: 1183 (王清,王英敏,羌建兵,张新房,王德和,董闯.金属学 报,2004;40:1183)
[23] Inoue A. Acta Mater, 2000; 48: 279
[24] Waniuk T A, Schroers J, Johnson W L. Appl Phys Lett, 2001; 78: 1213
[25] Inoue A, Zhang T, Kim Y H. Mater Trans JIM, 1997; 38: 749
[26] Zhang T, Inoue A. Mater Trans JIM, 1998; 39: 1230
[27] Zhang Y, Zhao D Q, Pan M X, Wang W H. J Non-Cryst Solids, 2003; 315: 206
[28] Buschow K H L. J Phys F: Met Phys, 1984; 14: 593
[29] Sakata M, Cowlam N, Davies H A. In: Masumoto M, Suzuki K, eds., Rapidly Quenched Metals, Vol.1, Sendai, Japan Inst Met, 1982: 327
[30] Sakata M, Cowlam N, Davies H A. J Phys F: Met Phys, 1981; 11: L157
[31] Scott M G. Scr Metall, 1981; 15: 1073
[32] Chen L C, Spaepen F. Nature, 1988; 336: 366
[33] Reichert H, Klein O, Dosch H, Denk M, Honkimaki V, Lippmann T, Reiter G. Nature, 2000; 408: 839
[34] Wang Q, Qiang J B, Wang Y M, Xia J H, Zhang X F, Dong C. Mater Sci Forum, 2005; 475-479: 3381
[1] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[2] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[3] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[4] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
[5] 张媛媛,林鑫,魏雷,任永明. 激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为[J]. 金属学报, 2017, 53(7): 824-832.
[6] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[7] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[8] 汪波, 王晓姣, 宋辉, 严菊杰, 邱涛, 刘文庆, 李慧. Al-Mg-Si合金时效早期显微组织演变及其对强化的影响*[J]. 金属学报, 2014, 50(6): 685-690.
[9] 杨高林,林鑫,胡桥,张莹,汪志太,李鹏,黄卫东. Zr55Cu33Al10Ni5块体非晶合金退火处理后脉冲激重熔晶化行为[J]. 金属学报, 2013, 49(6): 649-657.
[10] 胡强 曾燮榕 钱海霞 谢胜辉 盛洪超. 铁基块体非晶合金玻璃形成能力与特征自由体积的关系[J]. 金属学报, 2012, 48(11): 1329-1334.
[11] 楚大锋 徐刚 王伟 彭剑超 王均安 周邦新. APT和萃取复型研究压力容器模拟钢中富Cu团簇的析出[J]. 金属学报, 2011, 47(3): 269-274.
[12] 黄彩云 谌祺 柳林. 无Ni型锆基块体非晶合金在生物模拟体液中的摩擦磨损性能[J]. 金属学报, 2010, 46(6): 681-686.
[13] 张黎楠 谌祺 柳林. Zr55Cu30Al10Ni5块体非晶合金在过冷液态区的流变行为及本构关系[J]. 金属学报, 2009, 45(4): 450-454.
[14] 孙亚娟 魏先顺 黄永江 沈 军. 稀土Gd掺杂对锆基块体非晶合金玻璃形成能力及力学性能的影响[J]. 金属学报, 2009, 45(2): 243-248.
[15] 赵毅; 赵九洲; 胡壮麒 . 过冷Ni3Al熔体形核的分子动力学模拟[J]. 金属学报, 2008, 44(10): 1157-1160 .