Please wait a minute...
金属学报  2012, Vol. 48 Issue (11): 1329-1334    DOI: 10.3724/SP.J.1037.2012.00417
  论文 本期目录 | 过刊浏览 |
铁基块体非晶合金玻璃形成能力与特征自由体积的关系
胡强1), 曾燮榕2,3), 钱海霞2,3), 谢胜辉2,3), 盛洪超2,3)
1) 西北工业大学材料学院, 西安 710072
2) 深圳大学材料学院, 深圳 518060
3) 深圳市特种材料功能实验室, 深圳 518060
CORRELATION BETWEEN THE GLASS-FORMING ABILITY AND CHARACTERISTIC FREE VOLUMES OF THE IRON BASE BULK METALLIC GLASSES
HU Qiang1),  ZENG Xierong2,3),  QIAN Haixia2,3),  XIE Shenghui2,3), SHENG Hongchao2,3)
1) School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072
2) College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060
3) Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060
引用本文:

胡强 曾燮榕 钱海霞 谢胜辉 盛洪超. 铁基块体非晶合金玻璃形成能力与特征自由体积的关系[J]. 金属学报, 2012, 48(11): 1329-1334.
HU Qiang ZENG Xierong QIAN Haixia XIE Shenghui SHENG Hongchao. CORRELATION BETWEEN THE GLASS-FORMING ABILITY AND CHARACTERISTIC FREE VOLUMES OF THE IRON BASE BULK METALLIC GLASSES[J]. Acta Metall Sin, 2012, 48(11): 1329-1334.

全文: PDF(815 KB)  
摘要: 

运用循环热膨胀法获得了块体非晶合金与其晶态合金的体膨胀差曲线Δ(dV(T)/V0), 由此定义出块体非晶合金的 2个特征自由体积, 即结构弛豫中释放出的自由体积ΔVf-sr和玻璃转变中生成的自由体积 ΔVf-gt. Fe-(Er)-Cr-Mo-C-B系列块体非晶合金的实验结果表明: 非晶合金的玻璃形成能力与其特征自由体积关系密切, 临界尺寸Dc最大的非晶合金的ΔVf-gt也最大; 且Dc随ΔVf-sr变化趋势明显, Dc2Dc可以拟合成ΔVf-sr的负指数函数, 回归系数高达0.998.

关键词 块体非晶合金自由体积结构弛豫玻璃转变玻璃形成能力热膨胀    
Abstract

Many researches have demonstrated that the free volume have a great effect on the properties of bulk metallic glasses (BMGs). For different BMGs, however, quantitative measurement of free volumes and analysis of properties of BMGs using the measurement results are still difficult. In this work, the two types of characteristic free volumes, the free volume released in structural relaxation, ΔVf-sr and the free volume generated in glass transition, ΔVf-gt are given from the Δ(dV(T)/V0) curve, where the Δ(dV(T)/V0) is the thermal expansion difference between amorphous and crystalline samples measured by a cyclic thermal dilation test. In a series of Fe-(Er)-Cr-Mo-C-B BMGs, it is found that the BMG with the largest critical diameter (Dc) has also the largest ΔVf-gt, and Dc increases sensitively with the decrease of ΔVf-sr. More impressively, Dc2 or Dc can be fitted with high regression coefficient of 0.998 by a negative exponential function of ΔVf-sr. Hence, the characteristic free volume has a sensitive and close correlation with the glass forming ability of BMGs.

Key wordsbulk metallic glass    free volume    structural relaxation    glass transition    glass-forming ability    thermal dilation
收稿日期: 2012-07-11     
ZTFLH:  TG115.25  
基金资助:

深圳市科技计划项目CXB200903090012A和深圳市政府“人才驿站-双百计划”项目182资助

作者简介: 胡 \ \ \ 强, 男, 1979年生, 博士

[1] Cohen M H, Turnbull D. J Chem Phys, 1959; 31: 1164

[2] Cohen M H, Grest G S. Phys Rev, 1979; 20B: 1077

[3] van den Beukel A, Sietsma J. Acta Metall Mater, 1990; 38: 383

[4] Xie S H, Zeng X R, Qian H X. J Alloys Compd, 2009; 480: L37

[5] Li Y, Guo Q, Kalb J A, Thompson C V. Science, 2008; 322: 1816

[6] Cheng Y Q, Ma E. Appl Phys Lett, 2008; 93: 051910

[7] Haruyama O, Inoue A. Appl Phys Lett, 2006; 88: 131906

[8] Slipenyuk A, Eckert J. Scr Mater, 2004; 50: 39

[9] Wen P, Tang M B, Pan M X, Zhao D Q, Zhang Z, Wang W H. Phys Rev, 2003; 67B: 212201

[10] Nagel C, Ratzke K, Schmidtke E, Faupel F. Phys Rev, 1999; 60B: 9212

[11] Ye F, Sprengel W, Wunderlich R K, Fecht H J, Schaefer H E. PNAS, 2007; 104: 12962

[12] Wang Z T, Zeng K Y, Li Y. Scr Mater, 2011; 65: 747

[13] Peng D L, Shen J, Sun J F, Chen Y Y. Acta Metall Sin, 2005; 41: 835

(彭德林, 沈军, 孙剑飞, 陈玉勇. 金属学报, 2005; 41: 835)

[14] Zhang L N, Chen Q, Liu L. Acta Metall Sin, 2009; 45: 450

(张黎楠, 谌 祺, 柳林. 金属学报, 2009; 45: 450)

[15] Hu Q, Zeng X–R, Fu MW. J Appl Phys, 2011; 109: 053520

[16] Hu Q, Zeng X–R, Fu MW. J Appl Phys, 2012; 111: 083523

[17] Ponnambalam V, Poon S J, Shiflet G J. J Mater Res, 2004; 19: 1320

[18] Lu Z P, Liu C T, Thompson J R, Porter W D. Phys Rev Lett, 2004; 92: 4

[19] Shen J, Chen Q J, Sun J F, Fan H B, Wang G. Appl Phys Lett, 2005; 86: 151907

[20] Lu Y, Huang Y, Wei X, Shen J. Intermetallics, 2012; 30: 144

[21] Turnbull D. Contemp Phys, 1969; 10: 473

[22] Lu Z P, Liu C T. Acta Mater, 2002; 50: 3501

[23] Lu Z P, Liu C T. Phys Rev Lett, 2003; 91: 115505

[24] Du X H, Huang J C, Liu C T, Lu Z P. J Appl Phys, 2007; 101: 086108

[25] Guo S, Liu C T. Intermetallics, 2010; 18: 2065

[26] Lin X H, Johnson W L. J Appl Phys, 1995; 78: 6514

[27] Mukherjee S, Schroers J, Zhou Z, Johnson W L, Rhim W K. Acta Mater, 2004; 52: 3689

[28] Park E S, Na J H, Kim D H. Appl Phys Lett, 2007; 91: 031907

[29] Busch R, Schroers J, Wang W H. Mrs Bull, 2007; 32: 620

[1] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[2] 蒋敏强, 高洋. 金属玻璃的结构年轻化及其对力学行为的影响[J]. 金属学报, 2021, 57(4): 425-438.
[3] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.
[4] 杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
[5] 管鹏飞, 孙胜君. 金属玻璃结构及其失稳的原子层次研究[J]. 金属学报, 2021, 57(4): 501-514.
[6] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[7] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[8] 张媛媛,林鑫,魏雷,任永明. 激光立体成形退火态Zr55Cu30Al10Ni5粉末的晶化行为[J]. 金属学报, 2017, 53(7): 824-832.
[9] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[10] 贾婷婷,坚增运,许军锋,朱满,常芳娥. Ge30Se70硫系玻璃的特征温度和性能*[J]. 金属学报, 2016, 52(6): 755-760.
[11] 王长军,梁剑雄,刘振宝,杨志勇,孙新军,雍岐龙. 亚稳奥氏体对低温海工用钢力学性能的影响与机理*[J]. 金属学报, 2016, 52(4): 385-393.
[12] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.
[13] 杨高林,林鑫,胡桥,张莹,汪志太,李鹏,黄卫东. Zr55Cu33Al10Ni5块体非晶合金退火处理后脉冲激重熔晶化行为[J]. 金属学报, 2013, 49(6): 649-657.
[14] 吕宝臣 刘海涛 任鑫 王晓亮 李刚 孙跃军. 高溶质浓度(伪)三元系金属玻璃原子密堆垛模型[J]. 金属学报, 2012, 48(2): 240-244.
[15] 宋晓艳 孙中华. 负热膨胀反钙钛矿锰氮化合物的研究综述[J]. 金属学报, 2011, 47(11): 1362-1371.