Please wait a minute...
金属学报  2005, Vol. 41 Issue (7): 738-742     
  论文 本期目录 | 过刊浏览 |
微量Cr对Cu基块体非晶合金的形成能力及耐蚀性能的影响
刘 兵 柳 林 孙 民 邱春雷 谌 祺
华中科技大学材料科学与工程学院塑性成型及模具技术国家重点实验室; 武汉430074
Influence of Cr Micro-Addition on the Glass Forming Ability and Corrosion Resistance of Cu--Based Bulk Metallic Glasses
LIU Bing; LIU Lin ;SUN Min; QIU Chunlei; CHEN Qi
The State Key Laboratory of Plastic Forming Stimulation and Die & Mould Technology; Department of Materials Science and Technology; Huazhong University of Science and Technology; Wuhan 430074
引用本文:

刘兵; 柳林; 孙民; 邱春雷; 谌祺 . 微量Cr对Cu基块体非晶合金的形成能力及耐蚀性能的影响[J]. 金属学报, 2005, 41(7): 738-742 .
, , , , . Influence of Cr Micro-Addition on the Glass Forming Ability and Corrosion Resistance of Cu--Based Bulk Metallic Glasses[J]. Acta Metall Sin, 2005, 41(7): 738-742 .

全文: PDF(244 KB)  
摘要: XRD, DSC和DTA分析测试表明,微量Cr有利于提高块体非晶合金(Cu47Zr11Ti34Ni8)100-xCrx (x=0, 0.5, 1)非晶形成能力。室温动电位极化法对该合金在1 mol/L HCl溶液、3% NaCl溶液和6 mol/L KOH溶液中的电化学测试表明, 非晶合金存在自钝化现象,随Cr含量增加, 非晶合金的钝化区宽度显著增大, 维钝电流密度降低,耐蚀性能增强。含微量Cr的Cu基块体非晶合金比不含Cr的具有更好的抗腐蚀性能, 且远远优于不锈钢1Cr18Ni9Ti的抗腐蚀性能。
关键词 Cu基块体非晶合金微合金化非晶形成能力    
Abstract:Cu47Zr11Ti34Ni8)100-xCrx(x=0, 0.5 and 1.0) bulk metallic glasses (BMGs) were obtained by water--cooled copper mold casting. The effect of Cr micro--addition on the glass--forming ability (GFA) of the alloys was investigated by means of XRD, DSC and DTA. It was found that Cr micro--addition can enhance the GFA. Electrochemical measurements were carried out in 1 mol/L HCl, 3% NaCl and 6 mol/L KOH aqueous solutions by potentiadynamic polarization method at room temperature. It is shown that all the BMGs exhibited spontaneous passivation in the above electrolytes, and with the increase of Cr content, the passive zone remarkably increased and the passive current density decreased, implying better corrosion resistance of Cu-based BMGs with higher Cr content. The present results also demonstrated that the corrosion resistance of Cu--based BMGs with Cr micro--addition is much better than that of the stainless steel.
Key wordsCu--based metallic glass    microalloying    glass--forming ability
收稿日期: 2004-11-04     
ZTFLH:  TB383  
[1] Lin X H, Johnson W L. J Appl Phys, 1995; 78: 6514
[2] Inoue A, Zhang W, Zhang T, Kurosaka K. J Non-Cryst Solids, 2002; 304: 200
[3] Inoue A, Zhang W, Zhang T, Kurosaka K. Acta Mater, 2001; 49: 2645
[4] Choi-Yim H, Busch R, Johnson W L. J Appl Phys, 1998; 83: 7993
[5] Li C F, Saida J, Matsushida M, Inoue A. Scr Mater, 2000; 42: 923
[6] Zhang Q S, Zhang H F, Deng Y F, Ding B Z, Hu Z Q. Scr Mater, 2003; 49: 273
[7] Zhang T, Yamamoto T, Inoue A. Mater Trans JIM, 2002; 43: 3222
[8] Qin C L, Asami K, Zhang T, Inoue A. Mater Trans JIM, 2003; 44: 1042
[9] Qin C L, Asami K, Zhang T, Inoue A. Mater Trans JIM, 2003; 44: 749
[10] Yamamoto T, Zhang T, Inoue A. Mater Trans JIM, 2003; 44: 1147
[11] Inoue A. Bulk Amorphous Alloy: Preparation and Fundamental Characteristics. Switzerland: Trans Tech Pub- lication LTD, 1998: 37
[12] Zhang T, Inoue A. Mater Trans JIM, 1998; 39: 857
[13] Lu Z P, Li Y, Ng S C. J Non-Cryst Solids, 2000; 270: 103
[14] Inoue A, Zhang W, Zhang T, Kurosaka K. Acta Mater, 2001; 49: 2645
[15] Theodore A, Schroers W J, Johnson W L. Appl Phys Lett, 2001; 78: 1213
[16] Madge S V, Greer A L. Mater Sci Eng, 2004; A375: 759
[17] Huang J Z, Zuo Y. Corrosion Resistance Properties and Corrosion Data of Materials. Beijing: Chemical Industry Press, 2003: 45 (黄建中,左 禹.材料的耐蚀性和腐蚀数据.北京:化学工业 出版社,2003:345)
[18] Turnbull D. Contemp Phys, 1969; 10: 473
[19] Johnson W L. MRS Bull, 1999; 10: 42
[20] de Boer F R, Boom R, Mattens W C M, Miedema A R, Niessen A K.' Cohesion in Metals. Amsterdam: NorthHolland, 1988: 179
[21] Luborsky F E. Amorphous Metallic Alloys. London: Butterudorths, 1983: 636
[22] Habazaki H, Ukai H, Izumiya K, Hashimoto K. Mater Sci Eng, 2001; 318A: 77
[23] Pang S J, Zhang T, Asami K, Inoue A. Corros Sci, 2002; 44: 1847
[24] Yao H B, Li Y, Wee A T S. Electrochim Acta, 2003; 48: 2641
[25] Beverskog B, Puigdomenech I. Corros Sci, 1997; 39: 43
[1] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[2] 李金富, 李伟. 铝基非晶合金的结构与非晶形成能力[J]. 金属学报, 2022, 58(4): 457-472.
[3] 郑秋菊, 叶中飞, 江鸿翔, 卢明, 张丽丽, 赵九洲. 微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响[J]. 金属学报, 2021, 57(1): 103-110.
[4] 黄火根, 张鹏国, 张培, 王勤国. U-CoU-Fe基础体系非晶形成能力的比较[J]. 金属学报, 2020, 56(6): 849-854.
[5] 孙新军,刘罗锦,梁小凯,许帅,雍岐龙. 高钛耐磨钢中TiC析出行为及其对耐磨粒磨损性能的影响[J]. 金属学报, 2020, 56(4): 661-672.
[6] 耿遥祥, 王英敏. 铁基非晶合金局域结构与性能关联:基于微合金化机理研究[J]. 金属学报, 2020, 56(11): 1558-1568.
[7] 黎旺,孙倩,江鸿翔,赵九洲. Al-Bi合金凝固过程及微合金化元素Sn的影响[J]. 金属学报, 2019, 55(7): 831-839.
[8] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[9] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[10] 黄火根,徐宏扬,张鹏国,王英敏,柯海波,张培,刘天伟. 具有反常非晶形成能力的U-Cr二元合金[J]. 金属学报, 2017, 53(2): 233-238.
[11] 彭超, 李媛, 邓永和, 彭平. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析[J]. 金属学报, 2017, 53(12): 1659-1668.
[12] 李劲风,刘丹阳,郑子樵,陈永来,张绪虎. Er微合金化对2055 Al-Li合金微观组织及力学性能的影响*[J]. 金属学报, 2016, 52(7): 821-830.
[13] 张正延,孙新军,雍岐龙,李昭东,王振强,王国栋. Nb-Mo微合金高强钢强化机理及其纳米级碳化物析出行为*[J]. 金属学报, 2016, 52(4): 410-418.
[14] 丁贤飞,刘东方,郑运荣,冯强. B微合金化对HK40合金铸造疏松的影响[J]. 金属学报, 2015, 51(9): 1121-1128.
[15] 杨滨, 李鑫, 罗文东, 李宇翔. 微量添加Sn和Nb对Zr-Cu-Fe-Al块体非晶合金热稳定性和塑性的影响[J]. 金属学报, 2015, 51(4): 465-472.