Please wait a minute...
金属学报  2005, Vol. 41 Issue (1): 41-    
  论文 本期目录 | 过刊浏览 |
La-Mg-Ni系AB3型贮氢电极合金的相结构与电化学性能
廖 彬 雷永泉 吕光烈 陈立新 葛红卫 潘洪革
浙江大学材料系; 杭州 310027
Phase Structure and Electrochemical Properties of La--Mg--Ni System AB3 Type Hydrogen Storage Electrode Alloys
LIAO Bin; LEI Yongquan; Lü Guanglie;CHEN Lixin; GE Hongwei; PAN Hongge
Department of Materials and Engineering; Zhejiang University; Hangzhou 310027
引用本文:

廖彬; 雷永泉; 吕光烈; 陈立新; 葛红卫; 潘洪革 . La-Mg-Ni系AB3型贮氢电极合金的相结构与电化学性能[J]. 金属学报, 2005, 41(1): 41-.
, , , , , . Phase Structure and Electrochemical Properties of La--Mg--Ni System AB3 Type Hydrogen Storage Electrode Alloys[J]. Acta Metall Sin, 2005, 41(1): 41-.

全文: PDF(386 KB)  
摘要: XRD Rietveld分析显示, LaxMg3-xNi9(x=1.0-2.3)均由六方PuNi3型结构的主相及少量LaNi5及MgNi2杂相组成,主相的晶胞参数随x的增加而线性增大。合金的氢化物仍保持PuNi3型结构, 但其晶胞体积有较大的膨胀。电化学测试表明, 随x增加, 合金的最大放电容量由88.3 (x=1.0)逐渐增大到397.5 mAh/g(x=2.0), 然后又降低到230 mAh/g(x=2.3)。对放电容量超过348 mAh/g的合金(x =1.7-2.2), 在放电电流i=400-1200 mA/g的条件下, 合金的高倍率放电性能(HRD)均随x增加而有不同程度的降低.HRD的缓慢降低主要与合金电极进行电荷迁移反应时的电催化活性的逐渐降低有关, 而在x>2.0时, HRD的快速降低与氢在合金中的扩散速率明显降低有关.上述合金经100次循环后合金的容量保持率为55.7%-62.9%,容量衰退较快与循环过程中La和Mg的氧化腐蚀以及合金较大的吸氢体积膨胀率有关。
关键词 La-Mg-Ni型贮氢合金PuNi3型结构PCT曲线    
Abstract:XRD Rietveld analysis shows that LaxMg3-xNi9 (x=1.0---2.3) alloys consist of a main phase with hexagonal PuNi3-type structure and a few impurity phases (mainly LaNi5 and MgNi2, increasing x leads to an increase in both the lattice parameters and the unit cell volume of the main phase. The hydride of the alloys preserves the PuNi3 type structure, but shows a large unit cell volume expansion. The electrochemical measures indicate that the desorption plateau pressure Prm of the alloys decreases noticeably as x increases, while the maximum discharge capacity Cmax increases from 88.3 (x=1.0) to 397.5 (x=2.0), and then decreases to 230 mA.h/g (x=2.3). For the alloys with Cmax>348 mA.h/g (x=1.7-2.2), the high-rate dischargeability (HRD) of the electrodes at i=400-1200 mA/g decreases with increaseing x. The slower decrease of HRD is mainly attributed to the decrease of eletrocatalytic activity due to the charge--transfer reaction, and the more rapid decrease of HRD of the alloys with $x>$2.0 is related to the lower hydrogen diffusion rate in the bulk of alloy. The rate of capacity retention (S100) of the alloys after 100 charge/ discharge cycles is around 55.7%-62.9%, the rather fast cycling capacity degradation is mainly due to the corrosion of La and Mg and the large unit cell volume expansion in the hydride phase.
Key wordsLa--Mg--Ni    hydrogen storage    alloy
收稿日期: 2004-01-13     
ZTFLH:  TG139  
[1] Sakai T, Uehara I, Iwakura H. J Alloy Compd, 1999; 293-395: 762
[2] Ovshinsky S R, Feteenko M A, Ross J. Science, 1993, 260:176
[3] Kim D M, Jang K J, Lee J Y. J Alloy Compd, 1999; 293-395:762
[4] Lei Y Q, Wu Y M, Yang Q M, Wu J, Wang Q D. Z PhysChem, 1994; 183: 379
[5] Iwakura C, Inoue H, Zhang S G, Nohaza S. J AlloysCompd, 1998; 270: 142
[6] Tsukahara M, Takahashi K, Mishima T, Sakai T, Miya-mura H, Kuriyama N, Uehara I. J Alloys Compd, 1995;224: 162
[7] Reilly J J. In: Besenhard J O ed, Handbook of BatteryMaterials, New York: Wiley, 2000: 154
[8] Kadir K, Sakai T, Uahara I. J Alloys Compd, 1997; 257:115
[9] Kadir K, Nuriyama N, Sakai T, Uehara I, Eriksson L. JAlloys Compd, 1999; 284: 145
[10] Kadir K, Sakai T, Uahara I. J Alloys Compd, 1999; 287:264
[11] Kadir K, Sakai T, Uahara I. J Alloys Compd, 2000; 302:112
[12] Chen J, Takeshita H T, Tanaka H, Kuriyama N, Sakai T.J Alloys Compd, 2000; 302: 304
[13] Chen J, Kuriyama N, Takeshita H T, Tanaka H, Sakai T,Haruta M. Electrochem Solid-State Lett, 2000; 3: 249
[14] Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M. J Alloys Compd, 2000; 311: L5
[15] Liu Y F, Pan H G, Gao M X, Zhu Y F, Lei Y Q. Acta Metall Sin, 2003; 39: 666(刘永锋,潘洪革,高明霞,朱云峰,雷永泉.金属学报,2003;39:666)
[16] Balej J. Int J Hydrogen Energy, 1985; 10: 365
[17] Notten P H L, Hokkeling P. J Electrochem Soc, 1991; 138:1877
[18] Zheng G, Popov B N, White R E. J Electrochem Soc,1995; 142: 2695
[19] Virkar A V, Raman A. J Less-Common Met, 1969; 18:59
[20] Iwakura C, Oura T, Inouse H, Mastsuoka M. ElectrochimActa, 1996; 41(1):117
[21] Iwakura C, Matsuoka M, Asai K, Kohno T. J PowerSource, 1992; 38: 335
[22] Sun D L, Lei Y Q, Liu W H, Jiang J J, Wu J, Wang Q D.J Alloys Compd, 1995; 231: 621
[23] Willems J J. Philips J Res, 1984; 39(Suppl.1): 1
[24] Liao B, Lei Y Q, Chen L X, Lu G L, Pan H G, Wang QD. Submitted to J Alloys Compd
[1] 刘俊鹏, 陈浩, 张弛, 杨志刚, 张勇, 戴兰宏. 高熵合金的低温塑性变形机制及强韧化研究进展[J]. 金属学报, 2023, 59(6): 727-743.
[2] 李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
[3] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[4] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[5] 韩录会, 柯海波, 张培, 桑革, 黄火根. 非晶态U60Fe27.5Al12.5 合金的晶化动力学行为[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] 程坤 陈树明 曹烁 刘建荣 马英杰 范群波 程兴旺 杨锐 胡青苗. 第一性原理研究钛合金中的沉淀强化[J]. 金属学报, 0, (): 0-0.
[7] 刘帅帅, 侯超楠, 王恩刚, 贾鹏. Zr61Cu25Al12Ti2Zr52.5Cu17.9Ni14.6Al10Ti5 块体非晶合金过冷液相区的塑性流变行为[J]. 金属学报, 2022, 58(6): 807-815.
[8] 张金勇, 赵聪聪, 吴宜谨, 陈长玖, 陈正, 沈宝龙. (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x 高熵非晶合金薄带的结构特征及其晶化行为[J]. 金属学报, 2022, 58(2): 215-224.
[9] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[10] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] 杨群, 彭思旭, 卜庆周, 于海滨. 非晶态Ni80P20合金的玻璃转变和过冷液体性质[J]. 金属学报, 2021, 57(4): 553-558.
[12] 毕甲紫, 刘晓斌, 李然, 张涛. 非晶合金粉末作为润滑油添加剂的摩擦学性能[J]. 金属学报, 2021, 57(4): 559-566.
[13] 屈瑞涛, 王晓地, 吴少杰, 张哲峰. 金属玻璃的剪切带变形与断裂机制研究进展[J]. 金属学报, 2021, 57(4): 453-472.
[14] 潘杰, 段峰辉. 非晶合金的回春行为[J]. 金属学报, 2021, 57(4): 439-452.
[15] 李宁, 黄信. 块体非晶合金的3D打印成形研究进展[J]. 金属学报, 2021, 57(4): 529-541.