Please wait a minute...
金属学报  1996, Vol. 32 Issue (1): 63-68    
  论文 本期目录 | 过刊浏览 |
急冷Cu_(30)Al_(70)合金的结构及催化特性
孙笠;宋启洪;胡壮麒
中国科学院金属研究所快速凝固非平衡合金国家重点实验室
STRUCTURE AND CATALYTIC PROPERTIES OF RAPIDLY SOLIDIFIED Cu_(30)Al_(70)ALLOY
SUN Li; SONG Qihong; HU Zhuangqi (State Key Laboratory of Rapidly Solidified Nonequilibrium Alloy; Institute of Metal Research; Chinese Academy of Sciences; Shengyang 110015)(Manuscript received 1995-05-10; in revised form 1995-09-05)
引用本文:

孙笠;宋启洪;胡壮麒. 急冷Cu_(30)Al_(70)合金的结构及催化特性[J]. 金属学报, 1996, 32(1): 63-68.
, , . STRUCTURE AND CATALYTIC PROPERTIES OF RAPIDLY SOLIDIFIED Cu_(30)Al_(70)ALLOY[J]. Acta Metall Sin, 1996, 32(1): 63-68.

全文: PDF(445 KB)  
摘要: 本文研究了急冷Cu_(30)Al_(70)合金及其制成的急冷骨架铜催化剂,并与工业上广泛应用的Cu_(30)Al_(70)合金催化剂进行了对比.结果表明:急冷Cu_(30)Al_(70)合金组织较均匀,单质Al相较少,Cu,Al元素分布均匀.急冷骨架铜催化剂比表面积较小,孔径大,孔容积较大.急冷骨架铜催化剂在木糖加氢反应中的催化活性高于普通的骨架铜催化剂.
关键词 急冷铜铝合金骨架铜催化剂催化活性    
Abstract:The structures of rapidly solidified Cu_(30)Al_(70) alloy compared with conventional Cu_(30)Al_(70) alloy have been investigated. The structure in the rapidly solidified Cu_(30)Al_(70) alloy is more homogeneous than that of the conventional one and the aluminum phase is in the minor. The Al and Cu elements is also homogeneously distributed in the rapidly solidified Cu_(30)Al_(70) alloy. The rapidly solidified Raney copper has a smaller specific surface area and larger pore volume and diameter. The catalytic activity of rapidly solidified Raney copper is superior to that of the conventional Raney copper in hydrogenation.Correspondent: SUN Li, (State Key Laboratory of RSA, Institute of Metal Research, Chinese Academy of Sciences, Shengyang 110015)
Key words rapid solidification    copper-aluminum alloy    Raney copper catalyst    catalysis    activity
收稿日期: 1996-01-18     
1KomiyamaH,YokoyamaA,InoueH,MasumotoT,KimuraH.SciRepResInstTohokuUniv,Ser.A,1980;28:2172SmithGV,BrowerWE,MatyaszczykMS,PettitTL.In:SeiyamaT,TanabeKeds.,Proc7thIntCongrCatal,NewYork:Elsevier,1981;Vol.A:3553YokoyamaA,KomiyamaH,InoueH,MasumotoT,KimuraH.JCatal,198l;68:3554YoonC,CockeDL.JNon-Crystsolids,1986;79:2175BaikerA.FaradayDiscussChemSoc,1989;87:2396MolnarA,SmithG,BartokM.AdvancesinCatalysis,1989;36:3297OnakaI,YamauchiI,ItayaM.JJapanInstMetals,1992;56:9738FriedrichAD,YoungDJ,WainwrightMS.JElectrochemSoc,1981;128:18459TomsettAD,YoungDJ,WainwrightMS.JElectrochemSoc,1984;131:2476
[1] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[2] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[3] 杨亮, 吕皓天, 万春磊, 巩前明, 陈浩, 张弛, 杨志刚. 综述:活性元素作用机理——氧化物“钉扎”模型[J]. 金属学报, 2021, 57(2): 182-190.
[4] 张霞, 宋扬, 王誉, 纪逯鹤, 杨媚, 孟皓. 超声共混合成Ni(HNCN)2/BiVO4复合可见光催化剂[J]. 金属学报, 2020, 56(11): 1551-1557.
[5] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[6] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[7] 蒋成洋, 阳颖飞, 张正义, 鲍泽斌, 朱圣龙, 王福会. 一种Zr改性双相PtAl2+(Ni, Pt)Al涂层的制备及热腐蚀行为研究[J]. 金属学报, 2018, 54(4): 581-590.
[8] 吉忠海, 张莉莉, 汤代明, 刘畅, 成会明. 金属催化剂控制生长单壁碳纳米管研究进展[J]. 金属学报, 2018, 54(11): 1665-1682.
[9] 荣凤鸣, 王誉, 张霞. 基于氰胺锌的复合光催化剂的结构与可见光催化性能[J]. 金属学报, 2018, 54(1): 76-82.
[10] 张婷婷,祁阳,刘刚,刘鸣华. 形貌可控NaNbO3的生长机理和光催化性能[J]. 金属学报, 2017, 53(3): 376-384.
[11] 周小卫,欧阳春,乔岩欣,沈以赴. 活性Ti表面电沉积Ni-CeO2复合镀层及其强韧性机理分析[J]. 金属学报, 2017, 53(2): 140-152.
[12] 卢晓锋, 肖明, 陈阳梅, 杨帮成. 灭活细菌生物膜杂化Ti金属材料的生物活性研究[J]. 金属学报, 2017, 53(10): 1402-1412.
[13] 李慕勤, 姚海涛, 魏方红, 刘明达, 王赞, 彭书浩. 医用纯Mg表面多种复合处理膜层的组织结构和体内外性能[J]. 金属学报, 2017, 53(10): 1337-1346.
[14] 钟玉洁,戴洪斌,王平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究*[J]. 金属学报, 2016, 52(4): 505-512.
[15] 蒋宗佑,赵宗彦. 水分子在Au和Cu及其合金表面的吸附与分解DFT计算研究*[J]. 金属学报, 2016, 52(12): 1586-1594.