Please wait a minute...
金属学报  2018, Vol. 54 Issue (1): 76-82    DOI: 10.11900/0412.1961.2017.00126
  本期目录 | 过刊浏览 |
基于氰胺锌的复合光催化剂的结构与可见光催化性能
荣凤鸣, 王誉, 张霞()
东北大学理学院化学系 沈阳 110819
Structure and Visible-Light Induced Photocatalytic Activity of Zinc Cyanamide-Based Photocatalysts
Fengming RONG, Yu WANG, Xia ZHANG()
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
引用本文:

荣凤鸣, 王誉, 张霞. 基于氰胺锌的复合光催化剂的结构与可见光催化性能[J]. 金属学报, 2018, 54(1): 76-82.
Fengming RONG, Yu WANG, Xia ZHANG. Structure and Visible-Light Induced Photocatalytic Activity of Zinc Cyanamide-Based Photocatalysts[J]. Acta Metall Sin, 2018, 54(1): 76-82.

全文: PDF(705 KB)   HTML
摘要: 

应用锌盐与氨水以及单氰胺水溶液间配体交换反应,制备了氰胺锌(ZnNCN)颗粒。并通过在前驱体盐溶液中共混银盐,利用相同的配体交换反应过程,制备了氰胺银(Ag2NCN)/ZnNCN复合颗粒。利用XRD、SEM、红外光谱(FT-IR)和紫外-可见(UV-Vis)吸收光谱对光催化剂的结构进行表征。结果表明,单一ZnNCN为花瓣状颗粒,宽禁带半导体材料(禁带宽度Eg=4.71 eV)。Ag2NCN/ZnNCN复合颗粒形貌与单一ZnNCN和Ag2NCN相比有很大变化,2种金属氰胺化物以弱的物理作用力结合形成异质结构,复合颗粒的光谱响应范围扩展至可见光区,Eg=2.05 eV。以罗丹明B为光催化降解对象,研究了ZnNCN、Ag2NCN/ZnNCN复合颗粒在氙灯激发下的光催化活性。与单一ZnNCN以及Ag2NCN+ZnNCN机械混合物相比,Ag2NCN/ZnNCN复合颗粒表现出增强的光催化性能,表现为一级反应动力学特征。

关键词 可见光催化氰胺锌氰胺银配体交换反应    
Abstract

Semiconductor-based photocatalytic technology, using abundant and renewable sunlight as an induced light source represents an emerging successful technology to solve the global energy and environmental challenges. Considerable efforts have been paid to develop novel photocatalysts with good response to sunlight and high quantum conversion efficiency. In this work, single ZnNCN microparticles have been prepared by the ligand exchange reaction between zinc salt, ammonia and cyanamide. And Ag2NCN/ZnNCN hetero structure has been also fabricated using the same ligand exchange process but mixing the silver salt with zinc salt together. Some means, such as XRD, SEM, infrared spectroscopy (FT-IR) and ultraviolet visible spectrometer (UV-Vis) were used to characterize the samples. The results showed that the single ZnNCN was flower-like particles with wide band gap (Eg=4.71 eV). Compared with single ZnNCN, the Ag2NCN/ZnNCN composite particles presented different morphology with rough surface, and physical interaction was existed between two kinds of metal cyanamide for Ag2NCN/ZnNCN composites. Because of the heterostructure, the light response spectrum for Ag2NCN/ZnNCN composite particles was extended to the visible light region, and the band gap was changed to 2.05 eV. The photocatalytic activity of Ag2NCN/ZnNCN composite particles in the degradation of Rhodamine B under Xenon irradiation was investigated, meanwhile, single ZnNCN and the mixture of Ag2NCN and ZnNCN was also applied in the photocatalysis under same conditions for comparison. The apparently enhanced photocatalytic activity of Ag2NCN/ZnNCN heterostructure was observed, and a first-order kinetic was discussed.

Key wordsvisible-light photocatalysis    zinc cyanamide    silver cyanamide    ligand exchange reaction
收稿日期: 2017-04-11     
ZTFLH:  TQ13  
基金资助:国家自然科学基金项目No.21501023和国家级大学生创新创业训练计划项目No.201610145019
作者简介: 作者简介 荣凤鸣,男,1996年生,本科生
图1  ZnNCN、Ag2NCN和Ag2NCN/ZnNCN颗粒的SEM像及EDS
图2  ZnNCN、Ag2NCN和Ag2NCN/ZnNCN颗粒的XRD谱和红外光谱(FT-IR)
图3  ZnNCN、Ag2NCN和Ag2NCN/ZnNCN颗粒的紫外-可见(UV-Vis)漫反射吸收光谱和(A×hν)2相对hν变化关系曲线
图4  3种光催化剂对罗丹明B的光催化降解动力学曲线和一级动力学方程对于Ag2NCN/ZnNCN复合颗粒光催化动力学拟合曲线
[1] Fujishima A, Honda K.Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37
[2] Carey J H, Lawrence J, Tosine H M.Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bull. Environ. Contam. Toxicol., 1976, 16: 697
[3] Zhang T T, Qi Y, Liu G, et al.Growth mechanism and photocatalytic activity of NaNbO3 with controllable morphology[J]. Acta Metall. Sin., 2017, 53: 376(张婷婷, 祁阳, 刘刚等. 形貌可控NaNbO3的生长机理和光催化性能[J]. 金属学报, 2017, 53: 376)
[4] Feng X W, Chen H, Jiang F.In-situ ethylenediamine-assisted synthesis of a magnetic iron-basedmetal-organic framework MIL-53(Fe) for visible light photocatalysis[J]. J. Colloid Interface Sci., 2017, 494: 32
[5] Pu Y C, Chou H Y, Kuo W S, et al.Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu2O-rGO) nanoheterostructures and their related visible-light-driven photocatalysis[J]. Appl. Catal., 2017, 204B: 21
[6] Martins L M D R S, Alegria E C B A, Hughes D L, et al. Syntheses and properties of hydride-cyanamide and derived hydrogen-cyanamide complexes of molybdenum (IV). Crystal structure of [MoH2-(NCNH2)2(Ph2PCH2CH2PPh2)2][BF4]2[J]. Dalton Trans., 2003, 19: 3743
[7] Liu X H,Mü1ller P, Kroll P, et al. Synthesis, structure determination, and quantum-chemical characterization of an alternate HgNCN polymorph[J]. Inorg. Chem., 2002, 41: 4259
[8] Cunha S M P R M, da Silvaab M F C G, Pombeiro A J L. Activation of cyanamide by a molybdenum(0) diphosphinic centre. Formation of cyanoimide and its reactivity with electrophiles[J]. J. Chem. Soc. Dalton Trans., 2002, 43: 1791
[9] Cunha S M P R M, da Silva M F C G, Pombeiro A J L. Mixed dinitrogen-organocyanamide complexes of molybdenum(0) and their protic conversion into hydrazide and amidoazavinylidene derivatives[J]. Inorg. Chem., 2003, 42: 2157
[10] Deb S K, Yoffe A D.Inorganic cyanamides. Physical and optical properties, and decomposition[J]. Trans. Faraday Soc., 1959, 55: 106
[11] Liu X H, Dronskowski R, Kremer R K, et al.Characterization of the magnetic and structural properties of copper carbodiimide, CuNCN, by neutron diffraction and first-principles evaluations of its spin exchange interactions[J]. J. Phys. Chem., 2008, 112C: 11013
[12] Liu X H, Stork L, Speldrich M, et al.FeNCN and Fe(NCNH)2: Synthesis, structure, and magnetic properties of a nitrogen-based pseudo-oxide and -hydroxide of divalent iron[J]. Chem. Eur. J. 2009, 15: 1558
[13] Liu X H, Krott M, Müller P, et al.Synthesis, crystal structure, and properties of MnNCN, the first carbodiimide of a magnetic transition metal[J]. Inorg. Chem., 2005, 44: 3001
[14] Krott M, Liu X H, Fokwa B P T, et al.. Synthesis, crystal-structure determination and magnetic properties of two new transition-metal carbodiimides: CoNCN and NiNCN[J]. Inorg. Chem., 2007, 46: 2204
[15] Cao R, Tatsumi K.Use of dipotassium cyanamide for the synthesis of cyanoimido (NCN2-) complexes of tungsten and cobalt[J]. Chem. Commun., 2002, 18: 2144
[16] Becker M, Nuss J, Jansen M.Synthese und charakterisierung von Natriumcyanamid[J]. Z. Anorg. Allg. Chem., 2000, 626: 2505
[17] Becker M, Jansen M.Synthesis of potassium cyanamide, and crystal structure determination by pareto optimisation of the cost functions 'lattice energy' and 'powder intensities'[J]. Solid State Sci., 2000, 2: 711
[18] Liu X H, Decker A D, Schmitz D, et al.Crystal structure refinement of lead cyanamide and the stiffness of the cyanamide anion[J]. Z. Anorg. Allg. Chem., 2000, 626: 103
[19] Becker M, Jansen M.Synthese und charakterisierung von quecksilbercyanamid[J]. Z. Anorg. Allg. Chem., 2000, 626: 1639
[20] Liao W P, Hu C H, Kremer R K, et al.Formation of complex three-and one-dimensional interpenetrating networks within carbodiimide chemistry:NCN2--coordinated rare-earth-metal tetrahedra and condensed alkali-metal iodide octahedra in two novel lithium europium carbodiimide iodidesLiEu2(NCN)I3 and LiEu4(NCN)3I3[J]. Inorg. Chem., 2004, 43: 5884
[21] Becker M, Nuss J, Jansen M.Crystal structure and spectroscopic data of silver cyanamide (in German) [J].Z.Naturforsch., 2000, 55B:383
[22] Zhao W, Liu Y F, Liu J J, et al.Controllable synthesis of silver cyanamide as a new semiconductor photocatalyst under visible-light irradiation[J]. J. Mater. Chem., 2013, 1A: 7942
[23] Meng H, Li X X, Zhang X, et al.Fabrication of nanocomposites composed of silver cyanamide and titania for improved photocatalytic hydrogen generation[J]. Dalton Trans., 2015, 44: 19948
[24] Li X, Zhang X, Zhu Z F, et al.Synthesis of TiO2/Ag2NCN composite catalysts and their photocatalytic activity under visible light irradiation[J]. Chem. J. Chin Univ., 2015, 36: 361(李霞, 张霞, 朱泽峰等. TiO2/Ag2NCN复合光催化剂的制备与可见光催化性能[J]. 高等学校化学学报, 2015, 36: 361)
[25] Kaye K M, Grantham W, Hyett G.A facile route to thin films of zinc carbodiimide using aerosol-assisted CVD[J]. Chem. Vap. Deposition, 2015, 21: 281
[26] Pesika N S, Stebe K J, Searson P C.Determination of the particle size distribution of quantum nanocrystals from absorbance spectra[J]. Adv. Mater., 2003, 15: 1289
[1] 张霞, 宋扬, 王誉, 纪逯鹤, 杨媚, 孟皓. 超声共混合成Ni(HNCN)2/BiVO4复合可见光催化剂[J]. 金属学报, 2020, 56(11): 1551-1557.