Please wait a minute...
金属学报  2020, Vol. 56 Issue (11): 1551-1557    DOI: 10.11900/0412.1961.2020.00062
  本期目录 | 过刊浏览 |
超声共混合成Ni(HNCN)2/BiVO4复合可见光催化剂
张霞(), 宋扬, 王誉, 纪逯鹤, 杨媚, 孟皓
东北大学理学院化学系 沈阳 110819
Ultrasonic Blending Synthesis of Ni(HNCN)2/BiVO4 Composite Visible-Light Induced Photocatalysts
ZHANG Xia(), SONG Yang, WANG Yu, JI Luhe, YANG Mei, MENG Hao
Faculty of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
引用本文:

张霞, 宋扬, 王誉, 纪逯鹤, 杨媚, 孟皓. 超声共混合成Ni(HNCN)2/BiVO4复合可见光催化剂[J]. 金属学报, 2020, 56(11): 1551-1557.
Xia ZHANG, Yang SONG, Yu WANG, Luhe JI, Mei YANG, Hao MENG. Ultrasonic Blending Synthesis of Ni(HNCN)2/BiVO4 Composite Visible-Light Induced Photocatalysts[J]. Acta Metall Sin, 2020, 56(11): 1551-1557.

全文: PDF(2228 KB)   HTML
摘要: 

采用化学沉淀法分别合成了Ni(HNCN)2和BiVO4,然后通过超声共混制备了Ni(HNCN)2/BiVO4复合颗粒,利用XRD、SEM、红外光谱(FT-IR)和紫外-可见(UV-Vis)吸收光谱对复合光催化剂的结构进行表征,并研究其对于有机染料罗丹明B的可见光催化降解。结果表明,超声共混获得较小颗粒尺寸的Ni(HNCN)2沉积在棒状BiVO4表面形成异质结构。单一Ni(HNCN)2的禁带宽度为2.64 eV,BiVO4的禁带宽度为2.41 eV,Ni(HNCN)2/BiVO4复合颗粒的禁带宽度约为2.37 eV。相较于单一Ni(HNCN)2和BiVO4颗粒,复合颗粒禁带宽度变窄,更有利于对可见光的响应。在对罗丹明B的光催化降解过程中,Ni(HNCN)2与BiVO4按照摩尔比例1∶2合成的复合颗粒的光催化活性最强。光催化机理研究表明,匹配的能带结构促进光生电子和空穴在两相界面的流动,提高光催化效率。

关键词 超声共混合成可见光催化单氰胺镍钒酸铋    
Abstract

Photocatalytic technology is gaining increasing attention as one of the key technologies in solving environmental pollution problems owing to its ability to completely decompose organic contaminants. In addition, the development of visible-light-driven photocatalysts has always been an important topic in photocatalytic fields. In this work, Ni(HNCN)2 and BiVO4 were synthesized using a simple chemical precipitation process, which was followed by the preparation of Ni(HNCN)2-BiVO4 composite particles using a simple ultrasonic blending method. The structure of the resulting composite photocatalysts was characterized via XRD, SEM, FT-IR, and UV-Vis spectra, and its photocatalytic activities in the degradation of Rhodamine B were tested. The experimental results revealed that the smaller Ni(HNCN)2 particles produced via ultrasonic treatment were deposited on the surface of BiVO4 to form a heterostructure. The bandgap of single Ni(HNCN)2, BiVO4, and Ni(HNCN)2-BiVO4 are 2.64, 2.41, and 2.37 eV, respectively. Compared to the single Ni(HNCN)2 and BiVO4 particles, there was improved sensitivity to visible light in Ni(HNCN)2-BiVO4 composites due to the narrower bandgap of the composite particles. During the photocatalytic degradation of Rhodamine B, the composite particles synthesized with 1∶2 mole ratio of Ni(HNCN)2 and BiVO4 demonstrated the best visible-light photocatalytic activity. The mechanism of the photocatalysis suggested that the matched band structure promotes the flow of the photogenerated electrons and holes at the interface, thereby improve the photocatalytic efficiency.

Key wordsultrasonic blending synthesis    visible-light induced photocatalysis    nickel cyanamide    bismuth vanadate
收稿日期: 2020-02-25     
ZTFLH:  TQ13  
基金资助:国家自然科学基金项目(21501023);国家级大学生创新创业训练计划项目(201910145033);中央高校基本科研业务专项资金项目(N182410001)
作者简介: 张 霞,女,1971年生,博士,教授
图1  Ni(HNCN)2、BiVO4 和Ni(HNCN)2/BiVO4复合颗粒的SEM像和EDS分析
图2  Ni(HNCN)2、BiVO4和Ni(HNCN)2/BiVO4复合颗粒的XRD谱和FT-IR谱
图3  Ni(HNCN)2/BiVO4复合颗粒的UV-Vis光谱和(Ahν)2随 (hν)变化曲线
图4  Ni(HNCN)2/BiVO4复合颗粒对罗丹明B的降解曲线
图5  Ni(HNCN)2和BiVO4颗粒的Mott-Schottky曲线
图6  Ni(HNCN)2/BiVO4复合颗粒的能带结构示意图
[1] Le Moal M, Gascuel-Odoux C, Ménesguen A, et al. Eutrophication: A new wine in an old bottle? [J]. Sci. Total Environ., 2019, 651: 1
doi: 10.1016/j.scitotenv.2018.09.139 pmid: 30223216
[2] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238: 37
pmid: 12635268
[3] Ding Y, Yang I S, Li Z Q, et al. Nanoporous TiO2 spheres with tailored textural properties: Controllable synthesis, formation mechanism, and photochemical applications [J]. Prog. Mater. Sci., 2020, 109: 100620
[4] Katal R, Masudy-Panah S, Tanhaei M, et al. A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis [J]. Chem. Eng. J., 2020, 384: 123384
[5] Di T M, Xu Q L, Ho W K, et al. Review on metal sulphide-based Z-scheme photocatalysts [J]. ChemCatChem, 2019, 11: 1394
[6] Tayebi M, Lee B K. Recent advances in BiVO4 semiconductor materials for hydrogen production using photoelectrochemical water splitting [J]. Renew. Sustain. Energy Rev., 2019, 111: 332
[7] Wang T, Nie C Y, Ao Z M, et al. Recent progress in g-C3N4 quantum dots: Synthesis, properties and applications in photocatalytic degradation of organic pollutants [J]. J. Mater. Chem., 2020, 8A: 485
[8] Mun S J, Park S J. Graphitic carbon nitride materials for photocatalytic hydrogen production via water splitting: A short review [J]. Catalysts, 2019, 9: 805
[9] Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nat. Mater., 2009, 8: 76
pmid: 18997776
[10] Tian K, Liu W J, Jiang H. Comparative investigation on photoreactivity and mechanism of biogenic and chemosythetic Ag/C3N4 composites under visible light irradiation [J]. ACS Sustainable Chem. Eng., 2015, 3: 269
[11] Deb S K, Yoffe A D. Inorganic cyanamides. Physical and optical properties, and decomposition [J]. Trans. Faraday Soc., 1959, 55: 106
doi: 10.1039/tf9595500106
[12] Liu X H, Krott M, Müller P, et al. Synthesis, crystal structure, and properties of MnNCN, the first carbodiimide of a magnetic transition metal [J]. Inorg. Chem., 2005, 44: 3001
pmid: 15847401
[13] Liu X H, Stork L, Speldrich M, et al. FeNCN and Fe(NCNH)2: Synthesis, structure, and magnetic properties of a nitrogen-based pseudo-oxide and -hydroxide of divalent iron [J]. Chem. Eur. J., 2009, 15: 1558
pmid: 19115292
[14] Krott M, Liu X H, Fokwa B P T, et al. Synthesis, crystal-structure determination and magnetic properties of two new transition-metal carbodiimides: CoNCN and NiNCN [J]. Inorg. Chem., 2007, 46: 2204
doi: 10.1021/ic062051o pmid: 17302407
[15] Zhao W, Liu Y F, Liu J J, et al. Controllable synthesis of silver cyanamide as a new semiconductor photocatalyst under visible-light irradiation [J]. J. Mater. Chem., 2013, 1A: 7942
[16] Schädler H D, Jäger L, Senf I. Pseudoelementverbindungen. V. Pseudochalkogene—Versuch der empirischen und theoretischen Charakterisierung eines Konzeptes [J]. Z. Anorg. Allg. Chem., 1993, 619: 1115
[17] Meng H, Li X X, Zhang X, et al. Fabrication of nanocomposites composed of silver cyanamide and titania for improved photocatalytic hydrogen generation [J]. Dalton Trans., 2015, 44: 19948
pmid: 26515664
[18] Meng X R, Yao P, Xu Y, et al. Fabrication of organic-inorganic hybrid membranes composed of poly (vinylidene fluoride) and silver cyanamide and their high photocatalytic activity under visible light irradiation [J]. RSC Adv., 2016, 6: 61920
doi: 10.1039/C6RA10434G
[19] Rong F F, Wang Y, Zhang X. Structure and visible-light induced photocatalytic activity of zinc cyanamide-based photocatalysts [J]. Acta Metall. Sin., 2018, 54: 76
doi: 10.11900/0412.1961.2017.00126
[19] (荣凤鸣, 王 誉, 张 霞. 基于氰胺锌的复合光催化剂的结构与可见光催化性能 [J]. 金属学报, 2018, 54: 76)
doi: 10.11900/0412.1961.2017.00126
[20] Krott M, Liu X H, Müller P, et al. Synthesis and structure determination of Co(HNCN)2 and Ni(HNCN)2 [J]. J. Solid State Chem., 2007, 180: 307
doi: 10.1016/j.jssc.2006.10.021
[21] Kudo A, Ueda K, Kato H, et al. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution [J]. Catal. Lett., 1998, 53: 229
doi: 10.1023/A:1019034728816
[22] Liu X H, Müller P, Kroll P, et al. Synthesis, structure determination, and quantum-chemical characterization of an alternate HgNCN polymorph [J]. Inorg. Chem., 2002, 41: 4259
pmid: 12160416
[23] Sameera S, Rao P P, Divya S, et al. High IR reflecting BiVO4-CaMoO4 based yellow pigments for cool roof applications [J]. Energy Build., 2017, 154: 491
doi: 10.1016/j.enbuild.2017.08.089
[24] Yue X Z, Yi S S, Wang R W, et al. Cobalt phosphide modified titanium oxide nanophotocatalysts with significantly enhanced photocatalytic hydrogen evolution from water splitting [J]. Small, 2017, 13: 1603301
doi: 10.1002/smll.v13.14
[25] Hao X Q, Wang Y C, Zhou J, et al. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution [J]. Appl. Catal., 2018, 221B: 302
[26] Xiao Y J, Qi Y, Wang X L, et al. Visible-light-responsive 2D cadmium-organic framework single crystals with dual functions of water reduction and oxidation [J]. Adv. Mater., 2018, 30: 1803401
doi: 10.1002/adma.v30.44
[27] Qiu Y C, Yan K Y, Deng H, et al. Secondary branching and nitrogen doping of ZnO nanotetrapods: Building a highly active network for photoelectrochemical water splitting [J]. Nano Lett., 2012, 12: 407
pmid: 22149105
[28] Song H H, Sun Z Q, Xu Y, et al. Fabrication of NH2-MIL-125(Ti) incorporated TiO2 nanotube arrays composite anodes for highly efficient PEC water splitting [J]. Sep. Purif. Technol., 2019, 228: 115764
doi: 10.1016/j.seppur.2019.115764
[1] 荣凤鸣, 王誉, 张霞. 基于氰胺锌的复合光催化剂的结构与可见光催化性能[J]. 金属学报, 2018, 54(1): 76-82.