Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1145-1152    DOI: 10.3724/SP.J.1037.2012.00279
  论文 本期目录 | 过刊浏览 |
黄铜矿表面生物氧化膜的形成过程
杨洪英, 潘颢丹, 佟琳琳, 刘媛媛
东北大学材料与冶金学院, 沈阳 110819
FORMATION PROCESS OF BIOLOGICAL OXIDE FILM ON CHALCOPYRITE CRYSTAL SURFACE
YANG Hongying, PAN Haodan, TONG Linlin, LIU Yuanyuan
School of Materials and Metallurgy, Northeastern University, Shenyang 110819
引用本文:

杨洪英 潘颢丹 佟琳琳 刘媛媛. 黄铜矿表面生物氧化膜的形成过程[J]. 金属学报, 2012, 48(9): 1145-1152.
, , , . FORMATION PROCESS OF BIOLOGICAL OXIDE FILM ON CHALCOPYRITE CRYSTAL SURFACE[J]. Acta Metall Sin, 2012, 48(9): 1145-1152.

全文: PDF(3028 KB)  
摘要: 在细菌浸出黄铜矿的过程中, 浸出速率缓慢的原因是矿物表面会形成一层阻碍矿物与浸出液之间物质交换的钝化膜, 这层膜的组成会随着浸出的进行而变化. 利用SEM, EDS, XRD和XPS等对细菌浸出黄铜矿的过程中, 矿物表面的形貌、组成及物相变化进行了研究. 结果表明, 黄铜矿在细菌浸出过程中依次形成了缺铁铜硫化物 Cu1-xFe1-ySz(x<y), 单质硫晶体S0, 氧化铁, 羟基氧化铁和黄钾铁矾. 由于浸矿混合细菌ASH-07对硫的氧化作用, 硫化物层和单质硫层都是氧化膜形成过程中的中间产物, 致密的黄钾铁矾层则对黄铜矿的浸出产生钝化作用.
关键词 黄铜矿钝化表面细菌氧化黄钾铁矾    
Abstract:Chalcopyrite (CuFeS2) is the most common copper bearing sulfide in the natural world, and it is also the most widespread copper ore in the world. Pyrometallurgy is used to extract copper from chalcopyrite as main industrial method. However, environmentally friendly metallurgy is advocated because of increasingly serious environmental pollution. The bacterial metallurgy is considered a new clean smelting technology to deal with low--grade and complicated composition metal resources because of short flow, simple operation, low investment and friendly environment. In the process of bioleaching, the formation of oxide film on the chalcopyrite crystal surface hindered the rapid dissolution of chalcopyrite and restricted the large-scale application of copper bioleaching. It is concluded that the oxide film inhibits material exchange between chalcopyrite and leaching liquid on the surface of the chalcopyrite and depresses its leaching rate significantly. In the paper, the advanced surface analysis technologies, such as SEM, XRD and X-ray photoelectron spectroscopy (XPS) are used to observe and analysis the surface layer in the bacterial leaching process. It is studied for the formation of bio-oxide film on the natural chalcopyrite crystal surface, in order to reveal the passivation mechanism of chalcopyrite bioleaching. Through the observation of the microcosmic morphology characteristic changes of chalcopyrite during bioleaching, different chemical composition analysis of surface oxide layer in the different bacterial oxide phase were studied. The results show that the insoluble oxide film inhibits material exchange between chalcopyrite and leaching liquid on the surface of the chalcopyrite and depresses its leaching rate significantly. The results show that the rudiments of oxide film are formed on the surface of chalcopyrite after leaching for 72 h. The oxide layer with certain thickness is formed after 96 h, and the passivation is produced. The compact film is formed after 168 h because bacterial corrosion spots and rillsare formed on the surface of chalcopyrite, and it is begun to produce serious passivation. The variation of chemical state of sulfur element is S2-→S0→S4+→S6+. The reaction product, including iron deficiency copper sulfide
Cu$_{1-x}$Fe$_{1-y}$S$_{z}$($x iron oxide (Fe(III)-oxide), iron hydroxide oxide (Fe(III)-O-OH) and
jarosite (KFe3(SO4)2(OH)6) are formed on the surface
of chalcopyrite in order in the bioleaching process. The chalcopyrite
passive film formed is caused by the stable and compact layer whose main
composition is jarosite, and it produces strong passivation effects on the
chalcopyrite bacterial leaching.
Key wordschalcopyrite crystal    passivation    surface    bacterial oxidation    jarosite
收稿日期: 2012-05-14     
ZTFLH: 

TF111.3

 
基金资助:

国家自然基金项目51174062, 51104036和50874030, 国家高技术研究发展计划项目2012AA061502和2012AA061501及中央高校基本科研业务费专项资金项目N100602007资助

作者简介: 杨洪英, 女, 1960年生, 教授
[1] BrierleyJ A. FEMS Microbiol Lett, 1990; 75: 287

[2] Rohwerder T, Gehrke T, Kinzler K, Sand W. Appl Microbiol Biotechnol, 2003; 63: 239

[3] Dutrizac J E. Metall Trans, 1978; 9B: 431

[4] Petersen J, David G D. Hydrometallurgy, 2006; 83: 40

[5] Morin D, Lips A, Pinches T, Huisman J, Frias C, Norberg A, Forssberg E. Hydrometallurgy, 2006; 83: 69

[6] Bestamin O, Erkan S, Pauliina N, Anna H K, Jaakko A P. Hydrometallurgy, 2007; 88: 67

[7] Leahy MJ, DavidsonM R, SchwarzMP. Hydrometallurgy, 2007; 85: 24

[8] Cecilia S D, Pedro A G P, Lorena V E G, V´?ctor J Z A, Danny C, Emilio O C. Hydrometallurgy, 2005; 80: 241

[9] Rebecca B H, Peter D F, Jason J P. Hydrometallurgy, 2006; 83: 229

[10] Parker A, Klauber C, Kougianos A, Watling H R, van Bronswijk W. Hydrometallurgy, 2003; 71: 265

[11] Lopez–Juarez A, Gutierrez–Arenas N, Rivera–Santill´an R E. Hydrometallurgy, 2006; 83: 63

[12] Brierley J A, Brierley C L. Hydrometallurgy, 2001; 59: 233

[13] Watling H R. Hydrometallurgy, 2006; 84: 81

[14] Mousavi S M, Yaghmaei S, Vossoughi M, Jafari A, Hoseini S A. Hydrometallurgy, 2005; 80: 139

[15] Rodr?ques Y, Ballester A, Bl´azques M L, Gonzales F, Munoz J A. Hydrometallurgy, 2003; 71: 37

[16] Hackl R P, Dreisinger D B, Peters E, King J A. Hydrometallurgy, 1995; 39: 25

[17] Harmer S L, Thomas J E, Fornasiero D, Gerson A R. Geochim Cosmochim Acta, 2006; 70: 4392

[18] Liang C L, Xia J L, Yang Y, Nie Z Y, Qiu G Z. Chin J Nonferrous Met, 2012; 22: 265

(梁长利, 夏金兰, 杨益, 聂珍媛, 邱冠周. 中国有色金属学报, 2012; 22: 265)

[19] Xia L X, Tang L, Xia J L, Yin C, Cai L Y, Zhao X J, Nie Z Y, Liu J S, Qiu G Z. Trans Nonferrous Met Soc China, 2012; 22: 192

[20] Bevilaqua D, Diezperez I, Fugivara C S, Sanz F, Benedetti A V, Garcia Jr O. Bioelectrochemistry, 2004; 64: 79

[21] Yao G C, Wen J K, Gao H Z, Wang D Z. J Cent South Univ (Sci Technol), 2010; 41: 1234

(姚国成, 温建康, 高焕芝, 王淀佐. 中南大学学报(自然科学版), 2010; 41: 1234)

[22] Ahmadi A, Schaffie M, Manafi Z, Ranjbar M. Hydrometallurgy, 2010; 104: 99

[23] Third K A, Cordruwisch R, Watling H R. Hydrometallurgy, 2000; 57: 225

[24] Silverman M, Lundgren D. J Bacteriol, 1959; 77: 642

[25] Pan H D, Yang H Y, Chen S D, Li W T. In: Niu Y J ed., Memoir of the 8th Annual Conf Transactions of Nonferrous Metals Society of China, Changsha: Central South University Press, 2010: 146

(潘颢丹, 杨洪英, 陈世栋, 李伟涛. 见: 钮因健 主编, 第八届中国有色金属年会会议论文集, 长沙: 中南大学出版社, 2010: 146)

[26] Fu B, Li H C eds.. Manual of Nonferrous Metallurgical Analysis. Beijing: Metallurgical Industry Press, 2004: 1

(符斌, 李华昌编. 有色冶金分析手册. 北京: 冶金工业出版社, 2004: 1)

[27] Yang H Y, Yang L, Wei X J. Trans Nonferrous Met Soc China, 2001; 11: 323

(杨洪英, 杨 立, 魏绪钧. 中国有色金属学报, 2001; 11: 323)

[28] Gebhardt J E, McCarron J J, Richardson P E, Buckley A N. Hydrometallurgy, 1986; 17: 27

[29] Harmer S L, Thomas J E, Fornasiero D, Gerson A R. Geochim Cosmochim Acta, 2006; 70: 4392

[30] Dora N, Ignacio G. Electrochim Acta, 2006; 51: 5295

[31] Weisener C G, Smart R St C, Gerson A R. Geochim Cosmochim Acta, 2003; 67: 823

[32] Yuri L M, Yevgeny V T, Igor P A, Alexander V O, Vladimir A V, Denis V V. Appl Surf Sci, 2005; 225: 395

[33] McIntyre N S, Zetaruk D G. Anal Chem, 1997; 49: 1521

[34] Klauber C, Parker A, Bronswijk W V, Watling H. Int J Miner Process, 2001; 62: 65

[35] Lazaro I, Nicol M J. In: Young C, Alfantazi A M, Anderson C G eds., Hydrometallurgy. Warrendale, PA: TMS, 2003: 405

[36] Stott M B,Watling H R, Franzmann P D, Sutton D. Miner Eng, 2000; 13: 1117
[1] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[5] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[6] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[7] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[8] 高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
[9] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[10] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[11] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[13] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[14] 王浩伟, 赵德超, 汪明亮. 原位自生TiB2/Al基复合材料的腐蚀防护技术研究现状[J]. 金属学报, 2022, 58(4): 428-443.
[15] 汤雁冰, 沈新旺, 刘志红, 乔岩欣, 杨兰兰, 卢道华, 邹家生, 许静. 激光选区熔化Inconel 718合金在NaOH溶液中的腐蚀行为[J]. 金属学报, 2022, 58(3): 324-333.