Please wait a minute...
金属学报  2012, Vol. 48 Issue (7): 867-874    DOI: 10.3724/SP.J.1037.2012.00187
  论文 本期目录 | 过刊浏览 |
连续柱状晶CuAlNi合金无模拉拔过程中的组织性能演变
王祯, 刘雪峰, 谢建新
北京科技大学材料先进制备技术教育部重点实验室, 北京 100083
MICROSTRUCTURE AND MECHANICAL PROPERTIES EVOLUTIONS OF CONTINUOUS COLUMNAR-GRAINED CuAlNi ALLOY WIRES DURING DIELESS DRAWING PROCESS
WANG Zhen, LIU Xuefeng, XIE Jianxin
Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083
引用本文:

王祯 刘雪峰 谢建新. 连续柱状晶CuAlNi合金无模拉拔过程中的组织性能演变[J]. 金属学报, 2012, 48(7): 867-874.
, , . MICROSTRUCTURE AND MECHANICAL PROPERTIES EVOLUTIONS OF CONTINUOUS COLUMNAR-GRAINED CuAlNi ALLOY WIRES DURING DIELESS DRAWING PROCESS[J]. Acta Metall Sin, 2012, 48(7): 867-874.

全文: PDF(5699 KB)  
摘要: 在进料速率0.5 mm/s, 冷热源距离15 mm保持不变, 拉拔速率0.8-1.1 mm/s, 变形温度650-900 ℃的条件下, 对连续柱状晶组织Cu-14.0%Al-3.8%Ni(质量分数)合金线材进行了无模拉拔实验, 研究了无模拉拔工艺与合金显微组织和力学性能的关系, 并对变形后合金组织性能演变的机理进行了探讨. 结果表明: 平直晶界连续柱状晶合金线材经无模拉拔变形后, 可形成平直晶界和锯齿状晶界连续柱状晶、不完全动态再结晶和完全动态再结晶4种微观组织. 在变形温度650 ℃, 拉拔速率0.8-0.9 mm/s的范围内, 变形后合金仍然保持平直晶界连续柱状晶组织; 随着变形温度和拉拔速率的提高, 连续柱状晶的平直晶界向锯齿状晶界转变. 当拉拔速率为0.9 mm/s, 变形温度上升至850 ℃时, 合金呈现出明显的不完全动态再结晶的组织特征, 即原始柱状晶粒沿变形方向拉长变细, 在部分锯齿状晶界处有细小的动态再结晶晶粒产生; 继续升高温度至900 ℃, 合金发生完全动态再结晶, 大量等轴、尺寸较大的动态再结晶晶粒完全取代了变形的柱状晶粒. 拉拔变形后合金线材的抗拉强度随着变形温度的升高先小幅度增加然后显著降低, 而伸长率则单调降低.
关键词 Cu-Al-Ni合金连续柱状晶无模拉拔动态再结晶组织性能    
Abstract:Dieless drawing experiments of continuous columnar-grained Cu-14.0%Al-3.8%Ni (mass fraction) alloy wires were carried out at drawing speeds of 0.8-1.1 mm/s and deformation temperatures of 650-900 ℃, when the feeding speed and distance between the heating and the cooling sources kept invariant at 0.50 mm/s and 15 mm, respectively. Effects of dieless drawing parameters on the microstructure and mechanical properties of the alloy were investigated, and the mechanism of microstructure and mechanical properties evolutions of the deformed alloy was discussed. It was found that the straight continuous columnar-grained boundaries of the alloy wires evolved into regular small zigzag, disordered large zigzag and recrystallized boundaries. When the deformation temperature was 650 ℃ and the drawing speed was 0.8 and 0.9 mm/s, the alloy remained continuous columnar grains with straight boundaries after dieless drawing, while the straight columnar-grained boundaries gradually transformed into zigzag boundaries with the deformation temperature and drawing speed increasing. When the drawing speed was 0.9 mm/s and the deformation temperature up to 850 ℃, the alloy exhibited obviously incomplete dynamic recrystallized microstructure characteristic, $i.e$. the original columnar grains were elongated along the deformation direction, and small dynamic recrystallized grains generated at parts of zigzag grain boundaries. The alloy occurred complete dynamic recrystallization at the deformation temperature of 900 ℃, and the deformed columnar grains were completely replaced by numerous equiaxed dynamic recrystallized grains with larger size. The tensile strengths of the alloy after dieless drawing first showed a very modest increase trend and then decreased greatly, while the elongations kept decrease.
Key wordsCu-Al-Ni alloy    continuous columnar grain    dieless drawing    dynamic recrystallization    microstructure and mechanical property
收稿日期: 2012-04-10     
ZTFLH: 

TG146.1

 
基金资助:

国家自然科学基金项目51174027和50674008资助

作者简介: 王祯, 女, 1985年生, 博士生
[1] Zhu H, Matsuda J, Maruyama K. Mater Sci Eng, 2005; A397: 58

[2] Liu T Y, Robinson J S, Mccarthy M A. J Mater Process Technol, 2004; 153–154: 185

[3] Motoyasu G, Kaneko M, Soda H, Mclean A. Metall Mater Trans, 2001; 32A: 585

[4] Cai L S, Yu Y Q, Yin Z H, Wang D F, Li W G. Heat Treat Met, 2006; 31: 53

(蔡莲淑, 余业球, 尹占华, 王德芳, 黎沃光. 金属热处理, 2006; 31: 53)

[5] Liu X F, Li W H, Xie J X. Chin J Nonferrous Met, 2008; 18: 1248

(刘雪峰, 李卫河, 谢建新. 中国有色金属学报, 2008; 18: 1248)

[6] Zhang H, Xie J X, Wang Z D. J Univ Sci Technol Beijing, 2004; 11: 240

[7] Li Y G, Quick N R, Kar A. J Mater Process Technol, 2002; 123: 451

[8] Furushima T, Manabe K. J Mater Process Technol, 2007; 187–188: 236

[9] Wang Z T, Zhang S H, Xu Y, Luan G F, Bai G R. J Mater Process Technol, 2002; 120: 90

[10] Carolan R, Tiernan P. J Mater Process Technol, 2009; 209: 3335

[11] Furushima T, Manabe K. J Mater Process Technol, 2008; 201: 123

[12] Naughton M D, Tiernan P. J Mater Process Technol, 2007; 191: 310

[13] Li Y G, Nathaniel R Q, Aravinda K. Mater Sci Eng, 2003; A358: 59

[14] Tiernan P, Hillery M T. J Mater Process Technol, 2004; 155–156: 1178

[15] Liu X F, Wu Y H, Xie J X. Sci Chin, 2009; 52E: 2232

[16] He Y. PhD Thesis, University of Science and Technology Beijing, 2011

(何勇. 北京科技大学博士学位论文, 2011)

[17] Wang Z, Liu X F, Xie J X. Prog Nat Sci–Mater Int, 2011; 21: 368

[18] Krishnan R V, Delaey L, Tas H, Warlimont H. J Mater Sci, 1974; 9: 1536

[19] Zhou Z Q, Yue X L, Huo D P. Ordnance Mater Sci Eng, 1998; 21: 3

(周自强, 岳雪兰, 霍登平. 兵器材料科学与工程, 1998; 21: 3)

[20] Gastien R, Corbellani C E, Alvarez Villar H N, Sade M, Lovely F C. Mater Sci Eng, 2003; A349: 191

[21] Chen G L, Lin J P. Basis of Physical Metallurgy of Ordered Intermetallic Compound Materials. Beijing: Metallurgy Industry Press, 1999: 251

(陈国良, 林均品. 有序金属间化合物结构材料物理金属学基础. 北京: 冶金工业出版社, 1999: 251)

[22] Lovey F C, Torra V. Prog Mater Sci, 1999; 44: 189

[23] Hua K F. Micro–theories of Metal Mechanical Properties. Beijing: Science Press, 1983: 158

(哈宽富. 金属力学性质的微观理论. 北京: 科学出版社, 1983: 158)
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[4] 熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[7] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[8] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[9] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[10] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[11] 张阳, 邵建波, 陈韬, 刘楚明, 陈志永. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶[J]. 金属学报, 2020, 56(5): 723-735.
[12] 武华健, 程仁山, 李景仁, 谢东升, 宋锴, 潘虎成, 秦高梧. Al含量对Mg-Sn-Ca合金微观组织与力学性能的影响[J]. 金属学报, 2020, 56(10): 1423-1432.
[13] 张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] 张北江,黄烁,张文云,田强,陈石富. 变形高温合金盘材及其制备技术研究进展[J]. 金属学报, 2019, 55(9): 1095-1114.
[15] 李旭,杨庆波,樊祥泽,呙永林,林林,张志清. 变形参数对2195 Al-Li合金动态再结晶的影响[J]. 金属学报, 2019, 55(6): 709-719.