Please wait a minute...
金属学报  2012, Vol. 48 Issue (5): 587-592    DOI: 10.3724/SP.J.1037.2012.00097
  论文 本期目录 | 过刊浏览 |
三层共烧制备LaCrO3基连接体/复合阳极/YSZ电解质的研究
王松林1,2,凤仪2,王东生1,王泾文1
1. 铜陵学院机械工程系, 铜陵
2. 合肥工业大学材料科学与工程学院, 合肥 230009
THREE-LAYER CO-FIRING FABRICATION OF LaCrO3-BASED CERAMIC INTERCONNECT, COMPOSITE ANODE SUPPORT AND YSZ ELECTROLYTE
WANG Songlin 1,2, FENG Yi2, WANG Dongsheng1, WANG Jingwen1
1. Department of Mechanical Engineering, Tongling University, Tongling 244061
2. Department of Materials Science and Engineering, Hefei University of Technology, Hefei 230009
引用本文:

王松林,凤仪,王东生,王泾文. 三层共烧制备LaCrO3基连接体/复合阳极/YSZ电解质的研究[J]. 金属学报, 2012, 48(5): 587-592.
, , , . THREE-LAYER CO-FIRING FABRICATION OF LaCrO3-BASED CERAMIC INTERCONNECT, COMPOSITE ANODE SUPPORT AND YSZ ELECTROLYTE[J]. Acta Metall Sin, 2012, 48(5): 587-592.

全文: PDF(2736 KB)  
摘要: 将La0.7Ca0.3Cr0.97O3-δ (LCC)连接材料引入到NiO/YSZ阳极中, 制备NiO/YSZ/LCC 三相复合阳极, 并进行烧结特性、微观结构、电导率、热膨胀系数等性能对比测试. 结果表明, NiO/YSZ/LCC新型复合阳极具有优良的综合性能. 采用浆料浸渍法在NiO/YSZ/LCC阳极支撑体两个表面上分别制备LCC和YSZ湿膜, 1400℃空气条件下三层共烧4 h后, 获得致密LCC连接体和YSZ电解质薄膜.
关键词 陶瓷连接材料薄膜三层共烧固体氧化物燃料电池    
Abstract:Developing cost-effective methods to prepare dense ceramic interconnect membrane for solid oxide fuel cell (SOFC) stacks is currently considered as a major technical obstacle. In order to improve the co-firing compatibility of LaCrO3-based interconnects with the traditional YSZ-based SOFC anode support NiO/YSZ, interconnect material of  La0.7Ca0.3Cr0.97O3-δ(LCC) was introduced to NiO/YSZ anode. Triple-phase composite NiO/YSZ/LCC was prepared, and then examined as novel anode support. Sintering character, microstructure, electrical conductivity, and thermal expansion coefficient of the composite anode were investigated in detail as a function of LCC addition, respectively. Results indicated that the NiO/YSZ/LCC composite anode had excellent overall performance. Furthermore, by using a simple drop-coating process, LCC and YSZ wet membranes were prepared on the opposite surfaces of NiO/YSZ/LCC support, respectively. Followed by three-layer co-firing at 1400℃ in air for 4 h, dense La0.7Ca0.3Cr0.97O3-δ interconnect and YSZ electrolyte thin membranes were both successfully prepared on the porous NiO/YSZ/LCC anode support. This work presents a simple drop-coating/three-layer co-firing technical route for developing dense interconnect and electrolyte membranes for YSZ-based SOFC stacks.
Key wordsceramic interconnect    thin membrane    three-layer co-firing    solid oxide fuel cell (SOFC)
收稿日期: 2012-02-24     
ZTFLH: 

O611.6

 
基金资助:

国家自然科学基金项目21171131, 安徽省自然科学基金项目1208085QE84, 安徽省高等学校省级优秀青年人才基金重点项目

作者简介: 王松林, 男, 1973年生, 讲师, 博士
[1] Hua B, Zhang J F, Lu F S, Kong Y H, Pu J, Li J.  Acta Metall Sin, 2009; 45: 605

    (华 斌, 张建福, 卢凤双, 孔永红, 蒲 健, 李 箭. 金属学报, 2009; 45: 605)

[2] Kyung J Y, Stevenson J W, Marina O A.  J Power Sources, 2011; 196: 8531

[3] Zhu W Z, Deevi S C.  Mater Sci Eng, 2003; A348: 227

[4] Lu M F, Tsipis E V, Waerenborgh J C, Yaremchenko A A, Kolotygin V A, Bredikhin S, Kharton V V. J Power Sources, 2012; 206: 59

[5] Zhong Z.  Solid State Ionics, 2006; 177: 757

[6] Wang S L, Lin B, Xie K, Dong Y C, Liu X Q, Meng G Y.  J Alloys Compd, 2009; 468: 499

[7] Zhou X L, Deng F J, Zhu M X, Meng G Y, Liu X Q.  J Power Sources, 2007; 164: 293

[8] Wang S L, Liu M F, Dong Y C, Xie K, Liu X Q, Meng G Y.  Mater Res Bull, 2008; 43: 2607

[9] Sakai N, Yokokawa H, Horita T, Yamaji K.  Int J Appl Ceram Technol, 2004; 1: 23

[10] Jeffrey W F.  Solid State Ionics, 2004; 171: 1

[11] Liu M F, Zhao L, Dong D H, Wang S L, Juan D W, Liu X Q, Meng G Y.  J Power Sources, 2008; 177: 451

[12] Liu Y J, Ding X F, Gao L, Guo L C.J Nanjing Univ Technol (Nat Sci Ed), 2008; 30: 14

     (刘颖佳, 丁锡锋, 高 凌, 郭露村. 南京工业大学学报(自然科学版), 2008; 30: 14)

[13] Zhou X L, Ma J J, Deng F J, Meng G Y, Liu X Q.  Solid State Ionics, 2007; 177: 3461

[14] Simner S P, Hardy J S, Stevenson J W, Armstrong T R.  Solid State Ionics, 2000; 128: 53

[15] Athawale A A, Desai P A.  Ceram Int, 2011; 37: 3037

[16] Mori M, Hiei Y, Sammes N M.  Solid State Ionics, 1999; 123: 103

[17] Pal U B.  Solid State Ionics, 1992; 52: 227

[18] Kuo L J H, Vora S D, Singhal S C.  J Am Ceram Soc, 1997; 80: 589

[19] Li M H, Liu R Q.  Chin J Inorg Chem, 2008; 24: 195

     (李茂华, 刘瑞泉. 无机化学学报, 2008; 24: 195)

[20] Tao S W, Irvine J T S.  Nat Mater, 2003; 2: 320

[21] Liu M F, Dong D H, Peng R R, Gao J F, Juan D W, Liu X Q, Meng G Y.  J Power Sources, 2008; 180: 215

[22] Liu M F, Dong D H, Zhao F, Gao J F, Ding D, Liu X Q, Meng G Y.  J Power Sources, 2008; 182: 585

[23] Chick L A, Liu J, Stevenson J W, Armstrong T R, McCready D E, Maupin G D, Coffey G W, Coyle C A. J Am Ceram Soc, 1997; 80: 2109

[24] Chakraborty A, Basu R N, Maiti H S.  Mater Lett, 2000; 45: 162

[25] Wang S L, Lin B, Chen Y H, Liu X Q, Meng G Y.  J Alloys Compd, 2009; 479: 764
[1] 任师浩, 刘永利, 孟凡顺, 祁阳. 应变工程中Bi(111)薄膜的半导体-半金属转变及其机理[J]. 金属学报, 2022, 58(7): 911-920.
[2] 邱龙时, 赵婧, 潘晓龙, 田丰. 高速钢表面TiN薄膜的界面疲劳剥落行为[J]. 金属学报, 2021, 57(8): 1039-1047.
[3] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[4] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[5] 李长记,邹敏杰,张磊,王元明,王甦程. 外延膜的高分辨X射线衍射分析[J]. 金属学报, 2020, 56(1): 99-111.
[6] 吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
[7] 何东昱,刘玉欣. 0.8PbTiO3-0.2Bi(Mg0.5Ti0.5)O3铁电薄膜90°分步畴转与温度效应[J]. 金属学报, 2019, 55(3): 325-331.
[8] 宋贵宏,李贵鹏,刘倩男,杜昊,胡方. 溅射沉积Mg2(Sn, Si)薄膜组织结构与导电性能[J]. 金属学报, 2019, 55(11): 1469-1476.
[9] 何贤美, 童六牛, 高成, 王毅超. Nd含量对磁控溅射Si(111)/Cr/Nd-Co/Cr薄膜结构与磁性的影响[J]. 金属学报, 2019, 55(10): 1349-1358.
[10] 马晓琴, 詹清峰, 李金财, 刘青芳, 王保敏, 李润伟. 倾斜溅射对CoFeB薄膜条纹磁畴结构与磁各向异性的影响[J]. 金属学报, 2018, 54(9): 1281-1288.
[11] 于晓明, 谭丽丽, 刘宗元, 杨柯, 朱忠林, 李扬德. Ti6Al4V表面生物功能纯Mg薄膜制备及性能研究[J]. 金属学报, 2018, 54(6): 943-949.
[12] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[13] 董彩虹, 刘永利, 祁阳. 厚度对Bi薄膜表面特性和电学性质的影响[J]. 金属学报, 2018, 54(6): 935-942.
[14] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫. 各向异性稀土永磁薄膜的磁黏滞性[J]. 金属学报, 2018, 54(3): 457-462.
[15] 张广平, 陈红蕾, 罗雪梅, 张滨. 微纳米尺度金属导电材料热疲劳研究进展[J]. 金属学报, 2018, 54(3): 357-366.