Please wait a minute...
金属学报  2012, Vol. 48 Issue (4): 450-454    DOI: 10.3724/SP.J.1037.2011.00677
  论文 本期目录 | 过刊浏览 |
C和Nb含量对TP347HFG钢在650 ℃析出相参量和持久寿命的影响
彭志方1,党莹樱1,彭芳芳2
1. 武汉大学动力与机械学院, 武汉 430072
2. 东方锅炉(集团)有限公司材料研究所, 自贡643001
EFFECT OF CARBON AND NIOBIUM CONTENTS ON PHASE PARAMETERS AND CREEP RUPTURE TIME AT 650 ℃ FOR TP347HFG STEEL
PENG Zhifang1, DANG Yingying1,PENG Fangfang2
1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072
2. Materials Research Department, Dongfang Boiler Group Co. LTD., Zigong 643001
引用本文:

彭志方,党莹樱,彭芳芳. C和Nb含量对TP347HFG钢在650 ℃析出相参量和持久寿命的影响[J]. 金属学报, 2012, 48(4): 450-454.
, , . EFFECT OF CARBON AND NIOBIUM CONTENTS ON PHASE PARAMETERS AND CREEP RUPTURE TIME AT 650 ℃ FOR TP347HFG STEEL[J]. Acta Metall Sin, 2012, 48(4): 450-454.

全文: PDF(555 KB)  
摘要: 研究了C和Nb含量对TP347HFG钢在650 ℃析出相参量(成分、体积分数和尺寸)和持久寿命的影响. 对ASME成分范围内的2种不同C和Nb含量的TP347HFG钢在650 ℃, 230和 150 MPa条件下进行持久实验, 持久寿命分别为199, 420 h和2426, 8837 h, 其中C含量较低Nb含量较高的样品持久寿命较长. 对持久管样的EPMA-EDS+MPSM 和TEM-EDS分析表明, 较低的C含量和较高的Nb含量对应较少的M23C6和较多的 MX, 并阻碍了M23C6的聚集粗化, 同时基体中可保留较多的Cr, 有利于延长持久寿命. 此外, 运用热力学软件Thermo-Calc分析了在500--1300 ℃范围内C和Nb组合含量的变化对各相成分和体积分数的影响, 与实验结果相吻合.
关键词 TP347HFG钢C和Nb含量相参量持久寿命    
Abstract:TP347HFG is an austenitic stainless steel which is considered to be among the grades with the highest potential for use in super critical boilers. It has been reported that micro-addition of Nb and a relatively low level of carbon content can obviously enhance creep resistance in this class of materials. Thus, C and Nb content optimization is of significant interest within the composition range from ASME standard. In this study, the effect of carbon and niobium contents on phase parameters (phase composition, volume fraction and size) and creep rupture time and the related mechanism were investigated for TP347HFG steel. Creep rupture tests were carried out under applied stresses of 230 and 150 MPa, respectively, at 650 ℃. The rupture times of two samples with different C and Nb contents were 199 and 420 h at 230 MPa, 2426 and 8837 h at 150 MPa, respectively. The sample with lower C content and higher Nb content corresponded to longer rupture time at each of the stress level. The EPMA-EDS+MPSM (multiphase separation method) and TEM-EDS results show that the creep rupture times were remarkably increased for the sample with relatively lower C and higher Nb contents, which correspond to increasing the volume fraction of nano-scale MX and decreasing that of M23C6 as well as retarding the coarsening of M23C6. On the other hand, more Cr maintained in matrix could also benefit the creep rupture lives. In addition, Thermo-Calc software was used to calculate the mole fraction and the concentration of precipitated phases with various combinations of C and Nb contents over the range of 500-1300℃ and the results were in good agreement with the experimental ones.
Key wordsTP347HFG steel    carbon and niobium content    phase parameter    creep rupture time
收稿日期: 2011-11-01     
基金资助:

中央高校基本科研业务费专项资金项目201120802020001和东方锅炉(集团)股份有限公司2009-2011科技项目资助

作者简介: 彭志方, 男, 1954年生, 教授, 博士
[1] Iseda A, Okada H, Semba H, Igarashi M.  Energy Mater, 2007; 2: 199

[2] Yagi K, Merckling G, Kern T U, Irie H, Warlimont H. Creep Properties of Heat Resistant Steels and Superalloys.Berlin: Springer-Verlag, 2004: 249

[3] Erneman J, Schwind M, Andren H O, Nilsson J O, Wilson A,Agren J.  Acta Mater, 2006; 54: 67

[4] Nilsson J O.  Mater Sci Forum, 2007; 539-543: 4920

[5] Sourmail T.  Mater Sci Technol, 2001; 17: 1

[6] Thorvaldsson T, Dunlop G L.  Met Sci, 1980; 1: 513

[7] Laha K, Kyono J, Sasaki T, Kishimoto S, Shinya.  Metall Mater Trans,2005; 36A: 399

[8] Thorvaldsson T, Dunlop G L.  Met Sci, 1982; 16: 184

[9] Grot A S, Spruiell J E.  Metall Trans, 1975; 6A: 2023

[10] Keown S R, Pickering F B.  Creep Strength in Steel and High-Temperature Alloys. London: The Metals Society, 1974: 134

[11] Wadsworth J, Keown S R, Woodhead J H.  Met Sci, 1976; 10: 105

[12] Adamson J M, Martin J W.  J Iron Steel Inst, 1972; 210: 271

[13] Yu H Y, Dong J X, Xie X S.  Chin J Mater Res, 2010; 24: 449

     (于鸿垚, 董建新, 谢锡善.材料研究学报, 2010; 24: 449)

[14] Guo F Q, Cheng S C, Liu Z D, Bao H S, Zhang D M. Mater Mech Eng, 2007; 31: 11

     (郭富强, 程世长, 刘正东, 包汉生, 张代明. 机械工程材料, 2007; 31: 11)

[15] Taneike M, Sawada K, Abe F.  Metall Mater Trans, 2004; 35A: 1255

[16] Peng Z F, Yang Z G, Yan G Z, Chen S G, Zhou Y G. In: Academic Committees of the Superalloys, CSM ed.,  High-Temperature Structural Materials for Power and Energy Resource-Proc 11th Annual Chinese Conference on Superalloys, Shanghai: Metallurgical Industry Press, 2007: 666

     (彭志方, 杨志刚, 阎光宗, 陈盛广, 周元贵. 见: 中国金属学会高温材料分会主编,动力与能源用高温结构材料-第11届中国高温合金年会论文集, 上海: 冶金工业出版社,2007: 666)

[17] Peng F F, Peng Z F, Chen F Y. In: Chinese Society for Electrical Engineering ed.,  Symposium on Sinicization of New Type Steels for 600 MW/1000 MW Ultra-Supercritical Units, Yangzhou: China Electric Power Journal Net, 2009: 175

     (彭芳芳, 彭志方, 陈方玉. 见: 中国电机工程学会主编, 600 MW /1000 MW超超临界机组新型钢国产化研讨会报告文集, 扬州: 中国电力期刊网, 2009: 175)

[18] Peng Z F, Peng F F, Chen F Y.  Electr Power Constr, 2009; 30(12): 1

     (彭志方, 彭芳芳, 陈方玉. 电力建设, 2009; 30(12): 1)

[19] Peng Z F, Cai L S, Dang Y Y, Zhao L, Peng F F, Yang Z G, Yan G Z,Chen S G, Zhou J, Zhou Y G.  Mater Sci Forum, 2011; 706-709: 2450

[20] Kuai C G, Peng Z F.  Acta Metall Sin, 2008; 44: 897

     (蒯春光, 彭志方. 金属学报, 2008; 44: 897)
[1] 和思亮, 赵云松, 鲁凡, 张剑, 李龙飞, 冯强. 热等静压对铸态及固溶态第二代镍基单晶高温合金显微缺陷及持久性能的影响[J]. 金属学报, 2020, 56(9): 1195-1205.
[2] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[3] 余竹焕, 刘林. C对单晶高温合金持久性能的影响*[J]. 金属学报, 2014, 50(7): 854-862.
[4] 杨金侠,李金国,王猛,王延辉,金涛,孙晓峰. 热处理工艺对一种新型铸造镍基高温合金的组织和性能影响[J]. 金属学报, 2012, 48(6): 654-660.
[5] 丁智 张军 王常帅 苏海军 刘林 傅恒志. DZ125镍基高温合金高温持久断裂后的位错组态[J]. 金属学报, 2011, 47(1): 47-52.
[6] 郑运荣; 郑亮; 曾强; 阮中慈 . 初生M6C的形成及其对高钨铸造模具高温合金的影响[J]. 金属学报, 2004, 40(3): 285-290 .