Please wait a minute...
金属学报  2011, Vol. 47 Issue (11): 1382-1387    DOI: 10.3724/SP.J.1037.2011.00367
  论文 本期目录 | 过刊浏览 |
FH550级海洋平台用钢冲击断裂行为实验研究
周砚磊, 徐洋, 陈俊, 刘振宇
东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
EXPERIMENTAL STUDY OF THE IMPACT FRACTURE BEHAVIOR OF FH550 OFFSHORE PLATFORM STEEL
ZHOU Yanlei, XU Yang, CHEN Jun, LIU Zhenyu
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

周砚磊 徐洋 陈俊 刘振宇. FH550级海洋平台用钢冲击断裂行为实验研究[J]. 金属学报, 2011, 47(11): 1382-1387.
, , , . EXPERIMENTAL STUDY OF THE IMPACT FRACTURE BEHAVIOR OF FH550 OFFSHORE PLATFORM STEEL[J]. Acta Metall Sin, 2011, 47(11): 1382-1387.

全文: PDF(4564 KB)  
摘要: 通过热模拟、拉伸和低温冲击实验, 采用SEM, TEM, EDS和EBSD等手段研究了FH550海洋平台用钢的低温断裂行为. 结果表明, 轧态实验钢为下贝氏体和粒状贝氏体的混合组织, 回火后为回火贝氏体组织; 冲击断口多为韧窝断口, 部分等轴韧窝底部有含Ca和Al的氧化物夹杂, 个别试样呈现准解理断裂, 存在尺寸大于10 μm的含Fe, Mn的碳化物夹杂, 恶化韧性, 导致冲击吸收功波动; 断裂过程中裂纹扩展的主要方式为微孔聚合长大并与裂纹颈缩连结生长, 同时存在的剪切扩展裂纹易受到由于塑性变形而聚集成团的富C硬相的阻碍, 从而增加了裂纹扩展功. 79.3%的大角度晶界比例以及7.61 μm的细小晶粒尺寸是获得优良低温冲击韧性的关键因素.
关键词 FH550海洋平台用钢冲击韧性大角度晶界裂纹扩展M-A岛    
Abstract:The impact fracture behavior of FH550 offshore platform steel was investigated by use of SEM, TEM and EDS. The experimental results show that the microstructure of as--rolled test steel is consist of low bainite and granular bainite, and tempered bainite is the main structure of this steel after tempering. The dimple fracture was observed on most of frature surfaces of samples, and and some inclusions, such as CaO and Al2O3, appear at the bottom of isometric dimples. Carbides inclusions more than 10 μm were found on the cleavage fracture surface of a few of samples which could aggravate the impact toughness, and result in the fluctuation of the impact energy as brittle particles. Micropore accumulating and growing and crack necking are the main way for propagation of cracks, however, shear crack propagation may be obstructed by the particle clusters generated during plastic deformation, increasing the crack propagation work. It is also found that the fraction of high angle grain boundaries is 79.3%, and the average grain size is 7.61 μm. High percentage of large angle grain boundaries and fine grain size are the key factors to obtain excellent impact toughness.
Key wordsFH550 offshore platform steel    impact toughness    high angle grain boundary    crack propagation    M-A island
收稿日期: 2011-06-14     
ZTFLH: 

TG115.5

 
基金资助:

国家高技术研究发展计划资助项目2007AA03Z504

作者简介: 周砚磊, 男, 1984年生, 博士生
[1] Sun X J, Xu H Q, Li W S. Shandong Metall, 2009; 31(3): 11

(孙宪进, 徐洪庆, 李旺生. 山东冶金, 2009; 31(3): 11)

[2] Di G B, Liu Z Y, Hao L Q, Liu X H. Mater Mech Eng, 2008; 32(8): 1

(狄国标, 刘振宇, 郝利强, 刘相华. 机械工程材料, 2008; 32(8): 1)

[3] Lu Z X, Wang F C, Zhang Y Y, Guo A M. Res Iron Steel, 2005; 6: 17

(陆在学, 汪福成, 张云燕, 郭爱民. 钢铁研究, 2005; 6: 17)

[4] Nobuo S, Shinji M, Shigeru E. JFE Tech Rep, 2008; 11: 1

[5] Zhang X Z, Knott J F. Acta Mater, 1999; 47: 3483

[6] Chai F, Yang C F, Zhang Y Q, Xu Z. J Iron Steel Res, 2005; 17: 42

(柴锋, 杨才福, 张永权, 徐洲. 钢铁研究学报, 2005; 17: 42)

[7] Guo A M, Zou D H, Yi L X, Dong H X, Li P H, Liu K, Wu K M. Acta Metall Sin, 2009; 45: 390

(郭爱民, 邹德辉, 易伦雄, 董汉雄, 李平和, 刘 凯, 吴开明. 金属学报, 2009; 45: 390)

[8] Chen Y, Lambert S. Int J Fract, 2003; 124: 179

[9] Kunio T, Shimizu M, Yamada K, Suzuki H. Eng Fract Mech, 1975; 7: 411

[10] Yong Q L. Secondary Phases in Steels. Beijing: MetallurgicalIndustry Press, 2006: 27

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 27)

[11] Fang H S, Feng C, Zheng Y K, Zheng X H, Zhang C, Bai B Z. Acta Metall Sin, 2007; 43: 583

(方鸿生, 冯春, 郑燕康, 郑秀华, 张弛, 白秉哲. 金属学报, 2007; 43: 583)

[12] Cui Y X, Wang C L. Fracture Analysis. Harbin: Harbin Institute of Technology Press, 1998: 73

(崔约贤, 王常利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 73)

[13] Wang X S, Liang F, Zeng Y P, Xie X S. Acta Metall Sin, 2005; 41: 1272

(王习术, 梁锋, 曾燕屏, 谢锡善. 金属学报, 2005; 41: 1272)

[14] Beachem C D. Metall Trans, 1975; 6A: 377

[15] Schawlbe K. Eng Fract Mech, 1977; 9: 795

[16] David B. Elementary Engineering Fracture Mechanics. Netherlands: Martinus Nijhoff Publishers, 1986: 1

[17] Qiao Y, Argon A S. Mech Mater, 2003; 35: 313

[18] Qiao Y, Argon A S. Mech Mater, 2003; 35: 129
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[3] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[4] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[5] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[6] 周红伟, 白凤梅, 杨磊, 陈艳, 方俊飞, 张立强, 衣海龙, 何宜柱. 1100 MPa级高强钢的低周疲劳行为[J]. 金属学报, 2020, 56(7): 937-948.
[7] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[8] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[9] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[10] 张敏,贾芳,程康康,李洁,许帅,仝雄伟. 调质处理对G520钢焊接接头组织及性能的影响[J]. 金属学报, 2019, 55(11): 1379-1387.
[11] 张啸尘, 孟维迎, 邹德芳, 周鹏, 石怀涛. 预循环应力对高速列车关键结构用铝合金材料疲劳裂纹扩展行为的影响[J]. 金属学报, 2019, 55(10): 1243-1250.
[12] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[13] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[14] 王瑾, 余黎明, 黄远, 李会军, 刘永长. 晶体取向和He浓度对bcc-Fe裂纹扩展行为的影响[J]. 金属学报, 2018, 54(1): 47-54.
[15] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.