Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 533-540    DOI: 10.3724/SP.J.1037.2009.00461
  论文 本期目录 | 过刊浏览 |
X80管线钢的冲击断裂行为
邓伟; 高秀华; 秦小梅; 赵德文; 杜林秀; 王国栋
东北大学轧制技术及连轧自动化国家重点实验室; 沈阳 110819
IMPACT FRACTURE BEHAVIOR OF X80 PIPELINE STEEL
DENG Wei; GAO Xiuhua; QIN Xiaomei; ZHAO Dewen; DU Linxiu; WANG Guodong
State Key Laboratory of Rolling and Automation; Northeastern University; Shenyang 110819
引用本文:

邓伟 高秀华 秦小梅 赵德文 杜林秀 王国栋. X80管线钢的冲击断裂行为[J]. 金属学报, 2010, 46(5): 533-540.
, , , , , . IMPACT FRACTURE BEHAVIOR OF X80 PIPELINE STEEL[J]. Acta Metall Sin, 2010, 46(5): 533-540.

全文: PDF(1001 KB)  
摘要: 

在$-$20和$-$60℃对X80管线钢进行Charpy冲击实验, 用SEM--EDS对断口进行形貌和夹杂物成分分析, 并将断口切开进行金相和EBSD
观察, 研究X80管线钢的冲击断裂行为. 结果表明: 温度对X80管线钢最大冲击载荷影响较小, 但随实验温度降低, 裂纹形成功、裂纹扩展功和止裂后吸收的能量显著减小. 在冲击断裂过程中强烈的拉应力作用使断口附近产生变形带, 晶粒沿与主裂纹垂直的方向被拉长, 原始奥氏体晶界几乎不变形, 因而产生应力集中, 并产生沿晶界的断裂. 同时, 钢中的脆性第二相粒子也是裂纹源. 在裂纹扩展过程中, 强烈的内应力使主裂纹附近的晶粒产生剧烈的变形, 拉长直至破裂, 并形成新晶粒; 新形成的晶界表现为大角晶界. 裂纹扩展区附近的晶粒尺寸较原始组织细小而大角晶界比例有所增加. -20 ℃冲击断口裂纹扩展区附近的晶粒尺寸比原始组织小得多, 而-60℃断口裂纹扩展区附近的晶粒尺寸与原始组织相差不大.

关键词 X80管线钢冲击韧性大角晶界针状铁素体第二相粒子    
Abstract

Pipeline steels have been widely used in a long-distance transportation of large amounts of crude oil or natural gas under high pressure due to their high transportation efficiency, low energy loss and production cost. For high pressure gas transmission pipelines made from high-strength steels an important problem is to know their fracture behavior in a long running process. In this paper, fracture toughness of X80 pipeline steel was measured by V-notch Charpy impact test at -20 and\linebreak -60 ℃. OM, SEM, EDS and EBSD were used to analyze its fracture mechanism. Experimental results show that the maximum impact load is slightly influenced by temperature, but with the decrease of temperature, crack forming work, crack propagating work and energy absorbed by crack arresting decrease significantly. During fracture process, the intensive tensile stress in the sample would induce the deformation bands formed around the fracture surface and grains elongated along the direction vertical to the main crack, but original austenite grain boundaries are hardly deformed, it would cause stress concentration and then produce intergranular fracture. Generally, brittle second phase particles could act as crack sources under intensive internal stress. In the crack propagation process, grains near the main crack are deformed and elongated tempestuously, resulting in their breaking and new grains with high angle grain boundary (HAGB) formed. Therefore, the grain size decreases and the fraction of HAGB increases in the crack propagation region. Temperature has great influence on the plastic deformation behavior of pipeline steel during facture process. At -20 ℃, the tested steel has good plasticity and the grains are refined during deformation, but at -60 ℃, they are difficult to deform and refine. Consequently, the grain size near crack propagation zones in the sample impacted at -20 ℃ is much smaller than the original grain size, but in -60 ℃ impacted sample the grain sizes has little difference.

Key wordsX80 pipeline steel    impact toughness    high angle grain boundary    acicular ferrite    second phase particle
收稿日期: 2009-07-08     
基金资助:

国家自然科学基金项目50474015及中央高校基本科研业务费专项资金N090607002资助

作者简介: 邓伟, 男, 1983年生, 博士生

[1]Wiesner C S, Hayes B. Adv Nucl Sci Technol, 1999; 26: 79
[2]Chen Y, Lambert S.[J].Int J Fract.2003, 124:179-
[3]Hwang B, Lee S, Kim Y M, Kim N J, Yoo J Y, Woo C S. Mater Sci Eng, 2004; A368: 18
[4]Guo W, Dong H, Lu M, Zhao X. Int J Pressure Vessels Piping, 2002, 79: 403
[5]Mcconnell P, Hawbolt E B, Cooke R J. J Mater Energy Syst, 1981; 3(9): 28
[6]Hashemi S H.[J].Int J Pressure Vessels Piping.2008, 85:879-
[7]Hwang B, Shin S Y, Lee S, Kim N J, Kim S, Kang K B. Metall Mater Trans, 2006; 37A: 371
[8]Yang Z, Guo W L, Dong H R, Dong M H, Zhao X W. J Iron Steel Res, 2003; 15(5): 40
[9](杨政, 郭万林, 董慧茹, 董明海, 赵新伟. 钢铁研究学报, 2003; 15(5): 40)
[10]Yang Z, Guo W L, Huo C Y. Acta Metall Sin, 2003; 39: 908
[11](杨政, 郭万林, 霍春勇. 金属学报, 2003; 39: 908)
[12]Yang Z, Guo W L, Dong H R, Lu M X, Zhao X W, Luo J H. Acta Metall Sin, 2003; 39: 159
[13](杨政, 郭万林, 董慧茹, 路民旭, 赵新伟, 罗金衡. 金属学报, 2003; 39: 159)
[14]Zhang X Z, Knott J F.[J].Acta Mater.1999, 47:3483-
[15]Wiesner C S.[J].Int J Pressure Vessels Piping.1996, 69:185-
[16]Yuan P B, Zhang Y, Li J P.Welded Pipe Tube, 1995; 18(6): 24
[17](袁鹏斌, 张毅, 李建鹏. 焊管, 1995; 18(6): 24)
[18]Nohava J, Hausild P, Karlik M, Bompard P.[J].Mater Charact.2002, 49:211-
[19]Zhao M C, Yang K, Shan Y Y.[J].Mater Lett.2003, 57:1496-
[20]Zhao J S. Fracture Mechanics and Fracture Physics. Wuhan: Huazhong University of Science and Technology Press, 2003: 240
[21](赵建生. 断裂力学及断裂物理. 武汉: 华中科技大学出版社, 2003: 240)

[1] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[2] 朱东明, 何江里, 史根豪, 王青峰. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响[J]. 金属学报, 2022, 58(12): 1581-1588.
[3] 蒋中华, 杜军毅, 王培, 郑建能, 李殿中, 李依依. M-A岛高温回火转变产物对核电SA508-3钢冲击韧性影响机制[J]. 金属学报, 2021, 57(7): 891-902.
[4] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[5] 张体明, 赵卫民, 蒋伟, 王永霖, 杨敏. X80钢焊接残余应力耦合接头组织不均匀下氢扩散的数值模拟[J]. 金属学报, 2019, 55(2): 258-266.
[6] 万响亮, 胡锋, 成林, 黄刚, 张国宏, 吴开明. 两步贝氏体转变对中碳微纳结构钢韧性的影响[J]. 金属学报, 2019, 55(12): 1503-1511.
[7] 邵毅, 李彦默, 刘晨曦, 严泽生, 刘永长. 低碳铁素体不锈钢高频直缝电阻焊管退火工艺优化[J]. 金属学报, 2019, 55(11): 1367-1378.
[8] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[9] 杜瑜宾, 胡小锋, 姜海昌, 闫德胜, 戎利建. 回火时间对Fe-Cr-Ni-Mo高强钢碳化物演变及力学性能的影响[J]. 金属学报, 2018, 54(1): 11-20.
[10] 郭靖,郭汉杰,方克明,段生朝,石骁,杨文晟. 钢中第二相粒子形貌预报理论和检测方法[J]. 金属学报, 2017, 53(7): 789-796.
[11] 舒志强,袁鹏斌,欧阳志英,龚丹梅,白雪明. 回火温度对26CrMo钻杆钢显微组织和力学性能的影响[J]. 金属学报, 2017, 53(6): 669-676.
[12] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[13] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[14] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[15] 刘智勇,李宗书,湛小琳,皇甫文珠,杜翠薇,李晓刚. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理*[J]. 金属学报, 2016, 52(8): 965-972.