Please wait a minute...
金属学报  2010, Vol. 46 Issue (8): 997-1003    DOI: 10.3724/SP.J.1037.2010.00135
  论文 本期目录 | 过刊浏览 |
含Ti复合第二相粒子对微合金钢焊接热影响区组织和性能的影响
舒玮1, 王学敏1, 李书瑞2,贺信莱1
1. 北京科技大学材料科学与工程学院, 北京 100083
2. 武汉钢铁(集团)公司, 武汉 430080
INFLUENCE OF SECOND–PHASE PARTICLES CONTAINING Ti ON MICROSTRUCTURE AND PROPERTIES OF WELD–HEAT–AFFECTED–ZONE OF A MICROALLOY STEEL
SHU Wei 1, WANG Xuemin 1, LI Shurui 2, HE Xinlai 1
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2. Wuhan Iron and Steel (Group) Corp, Wuhan 430080
引用本文:

舒玮 王学敏 李书瑞 贺信莱. 含Ti复合第二相粒子对微合金钢焊接热影响区组织和性能的影响[J]. 金属学报, 2010, 46(8): 997-1003.
, , , . INFLUENCE OF SECOND–PHASE PARTICLES CONTAINING Ti ON MICROSTRUCTURE AND PROPERTIES OF WELD–HEAT–AFFECTED–ZONE OF A MICROALLOY STEEL[J]. Acta Metall Sin, 2010, 46(8): 997-1003.

全文: PDF(3630 KB)  
摘要: 

系统分析了含Ti的复合第二相粒子对微合金钢模拟焊接热影响区(WHAZ)组织和性能的影响.研究发现, 即使在较长的相变冷却时间t8/5=120 s下(对应焊接线能量为100 kJ/cm), Ti脱氧实验钢的模拟WHAZ低温冲击韧性也明显好于Al脱氧对比钢. 含Ti的第二相粒子对WHAZ性能的改善作用主要表现在以下两个方面: 首先, 钢中弥散分布着大量尺寸在几百纳米的含Nb的TiOx--MnS粒子以及尺寸小于50 nm的含TiOx$的NbC粒子,这两类小尺寸的第二相粒子有效地阻碍了焊接热循环过程中原奥氏体晶粒的长大,细化了焊接热影响区的微观组织; 此外, 尺寸在1---3 μm范围内的TiOx--MnS型复合粒子能够有效地诱导晶内针状铁素体(IAF)在其表面形核, 这些形核长大的IAF分割了原奥氏体晶粒, 从而进一步细化了微观组织.在以上两种因素的共同作用下, Ti脱氧实验钢经过不同模拟焊接热循环后, 组织得到明显细化, WHAZ的低温冲击韧性明显好于Al脱氧对比钢.

关键词 含Ti第二相粒子 焊接热影响区(WHAZ)晶内针状铁素体(IAF) 相变冷却时间(t8/5)    
Abstract

The effects of Ti–containing second–phase particles on the microstructure and properties of simulated welding heat affected zone (WHAZ) in a microalloy steel have been systematically investigated. The results show that the Ti deoxidized steel has a better low temperature impact toughness of simulated WHAZ than the Al deoxidized steel even in a longer phase change cooling time (t8/5=120 s, correspond to a welding heat input of 100 kJ/cm). The role of Ti–containing second–phase particls on improving the proprties ofWHAZ is mainly manifested in the following two aspects. First, theris a large number of Nb–containing TiOx–MnS particles with the size about several hundreds nanometers and Ti oxide containing NbC particles with the size less than 50 nm dispersed in the Ti deoxidized steel, these two kinds of small second–phase particles restrain the growth of austenite grain and refine the microstructure of WHAZ. Second, TiOx–MnS composite particles with the size between 1 μm to 3 μm can induce the nucleation of intragranular acicular ferrite (IAF) which could divide the prior autenite grain and refine tmicrostructure effectiely. As a result of the above two effects, the low temperature toughness of HAZ in Ti deoidized steel is significantly improved compared with the Al deoxidized steel.

Key wordsTi–contianing second–phase particle    weld heat affected zone WHAZ)    intragranular acicular ferrite (IAF)    phase change cooling time (t8/5)
收稿日期: 2010-03-19     
基金资助:

国家高技术研究发展计划资助项目2008AA03Z501

作者简介: 舒玮, 男, 1982年生, 博士生
[1]Sasaki M, Ohsasa K, Kudoh M, Matsuura K.Refinement of Austenite Grain in Carbon Steel by Addition of Titanium and Boron[J].ISIJ Int,2008,48:340. [2]Alogab K A, Matlock D K, Speer J G, Kleebe H J.The Effects of Heating Rate on Austenite Grain Growth in a Ti-modified SAE 8620 Steel with Controlled Niobium Additions[J].ISIJ Int,2007,47:1034. [3]Lee J L, Pan Y T.Microstructure and toughness of the simulated heat-affected zone in Ti- and Al-killed steels[J].Materials Science & Engineering A,1991,A136:109. [4]Sarma D S, Karasev A V, Jonsson P G.On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J].ISIJ Int,2009,49:1063. [5]Homma H, Ohkita S, Matsuda S, et al.IMPROVEMENT OF HAZ TOUGHNESS IN HSLA STEEL BY INTRODUCING FINELY DISPERSED Ti-OXIDE[J].Welding Journal ,1987,66:301. [6]Vega M I, Medina S F, Quispe A, et al.Influence of TiN particle precipitation state on static recrystallisation in structural steels[J].ISIJ Int, 2005,45:1878 [7]Ma Z T, Janke D. Oxide metallurgy - its purposes and practical approaches[J].Acta Metallurgica Sinica,1998,11:79 [8]Pan Y T, Lee J L.Development of TiOx-bearing steels with superior heat-affected zone toughness[J].Materials & Design,1994,15:331 [9]Hong S G, Kang K J, Park C G. Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J].Scripta Materialia, 2002,46:163 [10]Miodownik M A. Grain boundary engineering with particles[J].Scripta Materialia, 2006; 54:993 [11]Ricks R A, Howell P R, Barritte G S. The nature of acicular ferrite in HSLA steel weld metals[J].Journal of Materials Science, 1982; 17:732 [12]Barbaro F J, Krauklis P, Easterling K E.Formation of acicular ferrite at oxide particles in steels. Materials Science and Technology,1989,5:1057 [13]Lee Tae-Kyu, Kim H J, Kang B Y and Hwang S K. Effect of inclusion size on the nucleation of acicular ferrite in welds.ISIJ Int, 2000; 40:1260 [14]Al Hajeri, Khaled F. Particle-stimulated nucleation of ferrite in heavy steel sections. ISIJ Int, 2006; 46:1233 [15]Jye-Long Lee. Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments. Acta Metallurgica et Materialia, 1994; 42:3291 [16]Wu K M. Three-dimensional analysis of acicular ferrite in a low-carbon steel containing titanium.Scripta Materialia, 2006; 54:569 [17]Enomoto M, Wu K M, Inagawa Y, Murakami T, Nanba S. Three-dimensional observation of ferrite plate in low carbon steel weld.ISIJ Int, 2005; 45:756
[1] 胡志勇 杨成威 姜敏 杨光维 王万军 王新华. Ti脱氧钢含Ti复合夹杂物诱导晶内针状铁素体的原位观察[J]. 金属学报, 2011, 47(8): 971-977.
[2] 舒玮 王学敏 李书瑞 贺信莱. 焊接热影响区针状铁素体的形核长大及其对组织的细化作用[J]. 金属学报, 2011, 47(4): 435-441.