Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 613-617    DOI: 10.3724/SP.J.1037.2009.00799
  论文 本期目录 | 过刊浏览 |
汽车车身用Al-Mg-Si-Cu合金薄板应变强化行为的研究
田妮; 赵刚; 左良; 刘春明
东北大学材料各向异性与织构教育部重点实验室; 沈阳 110819
STUDY ON THE STRAIN HARDENING BEHAVIOR OF Al-Mg-Si-Cu ALLOY SHEET FOR AUTOMOTIVE BODY
TIAN Ni; ZHAO Gang; ZUO Liang; LIU Chunming
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education); Northeastern University; Shenyang 110819
引用本文:

田妮 赵刚 左良 刘春明 . 汽车车身用Al-Mg-Si-Cu合金薄板应变强化行为的研究[J]. 金属学报, 2010, 46(5): 613-617.
, , , . STUDY ON THE STRAIN HARDENING BEHAVIOR OF Al-Mg-Si-Cu ALLOY SHEET FOR AUTOMOTIVE BODY[J]. Acta Metall Sin, 2010, 46(5): 613-617.

全文: PDF(712 KB)  
摘要: 

针对汽车车身用Al-0.9Mg-1.0Si-0.7Cu-0.6Mn合金薄板, 通过固溶、T4及退火处理控制其合金相组态, 采用拉伸实验结合TEM/EDS观察研究了薄板在拉伸变形过程中的应变强化指数$n$值的变化规律及其应变强化行为. 结果表明, Al-0.9Mg-1.0Si-0.7Cu-0.6Mn合金薄板的拉伸真应力-真应变不完全满足Hollomon公式, 其对应于不同应变阶段的强化指数n各不相同; 塑性变形早期, 退火态合金薄板的应变强化效应最显著, 塑性变形后期, 固溶态合金薄板的应变强化效应最显著; 拉伸变形任意应变范围内, 固溶态合金薄板的应变强化指数n均高于T4态, 其原因是固溶态合金薄板位错滑移的切应力明显小于T4态合金薄板.

关键词 Al-Mg-Si-Cu合金汽车板应变强化应变强化指数    
Abstract

Al-Mg-Si-Cu series alloy sheet, which can be strengthened by heat treatment, is a perfect material for automotive body since it can be substituted from the conventional steel sheet for automotive body to reduce the vehicle weight and respond to the demands of energy saving and emissions reduction. However, because the crystal structure of aluminum alloy sheet is different from that of the steel sheet and especially there are a great deal of second-phases in aluminum alloy matrix, the forming characteristics of aluminum alloy sheet such as strain hardening behavior is different from that of steel sheet. Therefore the experiences obtained during forming steel sheet are not applicable to forming aluminum alloy sheet. It is urgent to clarify the relationship between microstructure especially second-phases and forming behavior of aluminum alloy sheet, from which a reasonable evaluation system of formability for aluminum alloy sheet can be established. In the present study, the variation of strain hardening exponent $n$ during plastic deformation and the strain hardening behaviors of Al-0.9Mg-1.0Si-0.7Cu-0.6Mn alloy sheet subjected to solid solution, T4 and annealing treatment were investigated by tensile test and TEM/EDS. The results show that the relationship between true strain and true stress of alloy sheet during tensile test does not fully meet the Hollomon formula, and the $n$ value of alloy sheet varies as the strain range to calculate the n value changes. The annealed alloy sheet has the most significant  strain hardening effect at the initial stage of plastic deformation, but the alloy sheet subjected to solid solution treatment shows the most distinct strain hardening effect at the latter stage of plastic deformation. The n values of alloy sheet subjected to solid solution treatment are larger than those of T4 alloy sheet at each given strain range during tensile test, which is attributed to the much lower shear stress for dislocation slip in the former sheet than in the latter sheet.

Key wordsAl-Mg-Si-Cu alloy    automotive body sheet    strain hardening    strain hardening exponent
收稿日期: 2009-11-30     
基金资助:

国家高技术研究发展计划项目2007AA03Z551和中央高校基本科研业务费项目N090302003资助

作者简介: 田妮, 女, 土家族, 1975年生, 讲师, 博士

[1] Saito M, Iwasuki S, Yasunaga K, Andoh K. JSAE Rev, 2000; 21: 511
[2] Miller W S, Zhuang L, Bottema J, Wittebrood A J, Smet P D, Haszler A, Vieregge A. Mater Sci Eng, 2000; A280: 37
[3] Carle D, Blount G. Mater Des, 1999; 20: 267
[4] C´aceres C H. Mater Des, 2009; 30: 2813
[5] WanM,Yang Y Y, Li S B. J Mater Process Technol, 2001; 116: 189
[6] Barlat F, Berm J C. Int J Plast, 2003; 19: 1297
[7] Yu Z Q, Zhao Y X, Lin Z Q. Chin J Nonferrous Met, 2004; 14: 1689
(于忠奇, 赵亦希, 林忠钦. 中国有色金属学报, 2004; 14: 1689)
[8] Zhao Y X, Yu Z Q. Mater Sci Technol, 2007; 15: 98
(赵亦希, 于忠奇. 材料科学与工艺, 2007; 15: 98)
[9] Song Y Q, Guan Z P, Ma P K, Song J W. Acta Metall Sin, 2006; 42: 673
(宋玉泉, 管志平, 马品奎, 宋家旺. 金属学报, 2006; 42: 673)
[10] Troeger L P, StarkeJr E A. Mater Sci Eng, 2000; A277: 102
[11] O’Brien M J, Bremen H F, Furukawa M, Horita Z, Langdon T G. Mater Sci Eng, 2007; A456: 236
[12] Ludwigson D C. Metall Trans, 1971; 2: 2825
[13] Mannan S L, Samuel K G, Rodriguez P. Scr Metall, 1982; 16: 255
[14] Sun L, Zhang Q C, Jiang H F. Acta Metall Sin, 2006; 42: 1248
(孙亮, 张青川, 江慧丰. 金属学报, 2006; 42: 1248)
[15] Jiang H F, Zhang Q C, Wu X P, Fan J H. Scr Mater, 2006; 54: 2041
[16] Abbadi M, H¨ahner P, Zeghloul A. Mater Sci Eng, 2002; A337: 194

[1] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[2] 于家英, 王华, 郑伟森, 何燕霖, 吴玉瑞, 李麟. 热浸镀锌高强汽车板界面组织对其拉伸断裂行为的影响[J]. 金属学报, 2020, 56(6): 863-873.
[3] 朱上,李志辉,闫丽珍,李锡武,张永安,熊柏青. Zn添加对预时效态Al-Mg-Si-Cu合金自然时效和烘烤硬化性的影响[J]. 金属学报, 2019, 55(11): 1395-1406.
[4] 邢辉, 郭明星, 汪小锋, 张艳, 张济山, 庄林忠. 不同浓度富Fe相粒子对Al-Mg-Si-Cu系合金弯边性能的影响*[J]. 金属学报, 2016, 52(3): 271-280.
[5] 崔莉, 郭明星, 彭祥阳, 张艳, 张济山, 庄林忠. 预变形对汽车用Al-Mg-Si-Cu合金析出行为的影响[J]. 金属学报, 2015, 51(3): 289-297.
[6] 彭祥阳, 郭明星, 汪小锋, 崔莉, 张济山, 庄林忠. 不同尺寸粒子对Al-Mg-Si-Cu系合金组织、织构和力学性能的影响*[J]. 金属学报, 2015, 51(2): 169-177.
[7] 张艳,郭明星,邢辉,王斐,汪小锋,张济山,庄林忠. 不同热加工工艺对Al-Mg-Si-Cu合金板材力学性能和组织的影响*[J]. 金属学报, 2015, 51(12): 1425-1434.
[8] 秦飞, 项敏, 武伟. 纳米压痕法确定TSV-Cu的应力-应变关系*[J]. 金属学报, 2014, 50(6): 722-726.
[9] 倪颂, 廖晓舟, 朱运田. 剧烈塑性变形对块体纳米金属材料结构和力学性能的影响*[J]. 金属学报, 2014, 50(2): 156-168.
[10] 张巧霞,郭明星,胡晓倩,曹零勇,庄林忠,张济山. 汽车板用Al—0.6Mg—0.9Si—0.2Cu合金时效析出动力学研究[J]. 金属学报, 2013, 49(12): 1604-1610.
[11] 马永 姚晓红 田林海 张翔宇 树学峰 唐宾. 利用纳米压入的反演分析法确定金属材料的塑性性能[J]. 金属学报, 2011, 47(3): 321-326.
[12] 杨平; 傅云义; 崔凤娥; 孙祖庆 . Q235碳素钢应变强化相变过程中铁素体晶粒取向分析[J]. 金属学报, 2001, 37(9): 900-906 .
[13] 杨平; 傅云义; 崔凤娥; 孙祖庆 . Q235碳素钢应变强化相变的基本特点及影响因素[J]. 金属学报, 2001, 37(6): 592-600 .
[14] 杨平; 傅云义; 崔凤娥; 孙祖庆 . Q235碳素钢应变强化相变过程中的动力学问题[J]. 金属学报, 2001, 37(6): 617-624 .
[15] 胡安民; 孙祖庆 . 低碳钢多道次热变形中的应变强化相变与铁素体动态再结晶[J]. 金属学报, 2000, 36(11): 1192-1196 .