Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 554-560    DOI: 10.3724/SP.J.1037.2009.00683
  论文 本期目录 | 过刊浏览 |
压铸充型过程中卷气现象的数值模拟研究
李帅君1); 熊守美1); Mei Li2);  John Allison2)
1) 清华大学机械工程系; 汽车安全与节能国家重点实验室;  北京 100084 2) Research $\&$ Advanced Engineering Department; Scientific Research Laboratory; Ford Motor Company; Dearborn; MI 48121; USA
NUMERICAL SIMULATION OF AIR ENTRAPMENT PHENOMENON DURING MOLD FILLING OF HIGH PRESSURE DIE CASTING PROCESS
LI Shuaijun1); XIONG Shoumei1); Mei Li2); John Allison2)
1) State Key Laboratory of Automotive Safety and Energy; Department of Mechanical Engineering; Tsinghua University; Beijing 100084 2) Research & Advanced Engineering Department; Scientific Research Laboratory; Ford Motor Company; Dearborn; MI 48121; USA
引用本文:

李帅君 熊守美 Mei Li John Allison. 压铸充型过程中卷气现象的数值模拟研究[J]. 金属学报, 2010, 46(5): 554-560.
, , , . NUMERICAL SIMULATION OF AIR ENTRAPMENT PHENOMENON DURING MOLD FILLING OF HIGH PRESSURE DIE CASTING PROCESS[J]. Acta Metall Sin, 2010, 46(5): 554-560.

全文: PDF(825 KB)  
摘要: 

采用一种液-气两相耦合模型模拟了压铸充型过程中的卷气现象, 对卷入金属液中的每个气泡均单独计算其压力变化的趋势, 通过压力传递将液-气两相联系在一起. 为了验证模型的可靠性和准确性, 开展了专门针对压铸的高速水模拟实验, 并采用液-气两相耦合模型以及单相流模型分别进行了模拟, 通过比较可以证实两相耦合模型在模拟卷气方面比单相流模型具有更高的精确度.

关键词 压铸卷气 液-气两相耦合模型    
Abstract

The most common defect found in the high pressure die casting (HPDC) process is gas porosity which significantly affects the mechanical properties of the final components. As it is known, the air entrapment of the liquid metal flow during the mold filling stage has a close relationship with the gas porosity distribution in die castings. The generation of the entrapped air is mainly due to the interaction between air and liquid metal in the die cavity. In the past few decades, extensive efforts have been made to develop numerical models for the simulation of mold filling. However, these efforts mainly focused on the single phase flow models which can only predict the liquid metal flow and assume that the effect of air in the die cavity is negligible. As a result, these models could not provide the quantity and location of entrapped air in die castings. Recently, several research results on tracking the entrapped air in the molten metal flow have been reported but some techniques still need to be improved further and much more researches are required. In this study, a liquid-gas coupled model is presented to simulate the air entrapment phenomenon during the HPDC mold filling process. The pressure of the entrapped air bubbles is solved at each time step.  The calculations of the liquid and gas phases are combined together through the pressure transfer. In order to verify the validity and stability of this model, a specially designed water analog experiment was carried out and compared with the numerical simulation results of the liquid-gas coupled model and the single phase flow model, respectively. The comparison shows that the liquid-gas coupled model has better prediction accuracy than the single phase flow model in tracking the entrapped air bubbles.

Key wordsdie casting    air entrapment    liquid-gas coupled model
收稿日期: 2009-10-19     
基金资助:

国家重点基础研究发展计划项目2005CB724105和2006CB605208--2以及美国Ford汽车公司资助

作者简介: 李帅君, 男, 1981年生, 博士生

[1] Cleary P W, Ha J, Prakash M, Nguyen T. Appl Math Model, 2006; 30: 1406
[2] Vinarcik E J. Adv Mater Process, 2001; 159: 49
[3] Cross M, Pericleous K, Croft T N, McBride D, Lawrence J A, Williams A J. In: Murat T ed., TMS Annual Meeting, San Francisco: Minerals, Metals and Materials Society, 2005: 305
[4] Huang W S, Stoehr R A. J Met, 1983; 35(10): 22
[5] Lin H J. AFS Trans, 1988; 96: 447
[6] Li Y B, Wei Z. Mater Technol, 2003; 18(1): 36
[7] Caboussat A, Picasso M, Rappaz J. J Comput Phys, 2005; 203: 626
[8] Hong J H, Choi Y S, Hwang H Y, Choi J K. In: Bellet M ed., Modeling of Casting, Welding and Advanced Solidification Processes–XI, Opio: Minerals, Metals and Materials Society, 2006: 611
[9] Hao J, Chen L L, Zhou J X. In: Materials Science Forum ed., 5th Int Conf on Physical and Numerical Simulation of Materials Processing, Zhengzhou: Trans Tech Publications Ltd., 2007: 43
[10] Anderson J D. Computational Fluid Dynamics. New York: McGraw–Hill Companies, 1995: 248
[11] Chorin A J. Math Comput, 1968; 22: 745
[12] Kim J, Moin P. J Comput Phys, 1985; 59: 308
[13] Armfield S, Street R. Int J Numer Methods Fluids, 2002; 38: 255
[14] Hirt C W, Nichols B D. J Comput Phys, 1981; 39: 201
[15] Homayonifar P, Babaei R, Attar E, Shahinfar S, Davami P. Int J Adv Manuf Technol, 2008; 39: 219

[1] 孙宝德, 王俊, 康茂东, 汪东红, 董安平, 王飞, 高海燕, 王国祥, 杜大帆. 高温合金超限构件精密铸造技术及发展趋势[J]. 金属学报, 2022, 58(4): 412-427.
[2] 刘日平, 马明臻, 张新宇. 块体非晶合金铸造成形的研究新进展[J]. 金属学报, 2021, 57(4): 515-528.
[3] 祁明凡, 康永林, 周冰, 朱国明, 张欢欢. 强制对流搅拌流变压铸AZ91D镁合金的组织与性能*[J]. 金属学报, 2015, 51(6): 668-676.
[4] 曹永友, 熊守美, 郭志鹏. 压铸压室内部界面传热反算模型的建立和应用*[J]. 金属学报, 2015, 51(6): 745-752.
[5] 王志胜, 陈祥, 李言祥, 张华伟, 刘源. B对铜合金压铸热作模具钢高温力学及热疲劳性能的影响*[J]. 金属学报, 2015, 51(5): 519-526.
[6] 万谦,赵海东,邹纯. 铝合金压铸件微观孔洞三维特征及分布的研究[J]. 金属学报, 2013, 49(3): 284-290.
[7] 王向杰 游国强 张均成 龙思远. 压铸AZ91D镁合金母材气孔在重熔过程的遗传性研究[J]. 金属学报, 2012, 48(12): 1437-1445.
[8] 吴孟武 熊守美. 考虑压室预结晶的镁合金压铸组织实验及模拟研究[J]. 金属学报, 2011, 47(5): 528-534.
[9] 韩志强 李金玺 杨文 赵海东 柳百成. 铝合金挤压铸造过程微观孔洞形成的建模与仿真[J]. 金属学报, 2011, 47(1): 7-16.
[10] 吴孟武 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟[J]. 金属学报, 2010, 46(12): 1534-1542.
[11] 单际国 张婧 郑世卿 陈武柱 任家烈. 压铸镁合金激光焊气孔形成原因的实验研究[J]. 金属学报, 2009, 45(8): 1006-1012.
[12] 韩志强 朱维 柳百成. 挤压铸造凝固过程热--力耦合模拟 I.数学模型及求解方法[J]. 金属学报, 2009, 45(3): 356-362.
[13] 朱维 韩志强 柳百成. 挤压铸造凝固过程热--力耦合模拟 II. 模拟计算及实验验证[J]. 金属学报, 2009, 45(3): 363-368.
[14] 李帅君 熊守美 Mei Li John Allison. 应用两相流模型模拟压铸充型过程的卷气现象[J]. 金属学报, 2009, 45(10): 1153-1158.
[15] 郭志鹏 熊守美 Mei Li John Allison. 压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系[J]. 金属学报, 2009, 45(1): 102-106.