Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1437-1445    DOI: 10.3724/SP.J.1037.2012.00239
  论文 本期目录 | 过刊浏览 |
压铸AZ91D镁合金母材气孔在重熔过程的遗传性研究
王向杰1,游国强1,2,张均成1,龙思远1,2
1. 重庆大学材料科学与工程学院, 重庆 400044
2. 重庆大学国家镁合金材料工程技术研究中心, 重庆 400044
STUDY ON HEREDITARY OF PORES IN LASER REMELTING OF DIE CASTING AZ91D MAGNESIUM ALLOY
WANG Xiangjie 1, YOU Guoqiang 1,2, ZHANG Juncheng 1, LONG Siyuan 1,2
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044
2. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044
引用本文:

王向杰 游国强 张均成 龙思远. 压铸AZ91D镁合金母材气孔在重熔过程的遗传性研究[J]. 金属学报, 2012, 48(12): 1437-1445.
WANG Xiangjie YOU Guoqiang ZHANG Juncheng LONG Siyuan. STUDY ON HEREDITARY OF PORES IN LASER REMELTING OF DIE CASTING AZ91D MAGNESIUM ALLOY[J]. Acta Metall Sin, 2012, 48(12): 1437-1445.

全文: PDF(4570 KB)  
摘要: 

对压铸AZ91D镁合金进行CO2激光局部重熔, 采用OM和SEM观察了母材预存气孔和重熔区气孔特征, 利用粒径分析软件Nano measure 1.2测量了气孔尺寸, 着重研究了重熔区气孔同母材气孔的关联性.结果表明: 压铸镁合金母材预存气孔在重熔过程表现出明显的遗传性; 重熔区出现的微观气孔具有近圆形截面, 内壁光滑, 是氢致气孔; 重熔区出现的宏观气孔呈蠕虫状, 内壁存在气体通道, 并具有明显的金属冲刷痕迹. 分析认为, 氢致气孔主要遗传于母材固溶的原子氢和存于压铸缺陷的分子氢, 宏观气孔主要遗传于母材压铸过程卷入的气体. 分析了两类气孔的形成机制, 建立了母材预存气孔同重熔区宏观气孔内在关联的数学模型.

关键词 压铸镁合金 激光重熔 气孔 形成机制    
Abstract

Porosity has been a main problem for die casting magnesium alloy welding and casting defect repair. In order to study the formation mechanism of pores in fusion welding of die casting magnesium alloy, in this research, experiment of die casting AZ91D magnesium alloy CO2 laser re–melting was carried out. OM and SEM were employed to observe the characteristics of pores existing at both the base metal and re–melted zone, and a software for particle size analysis called nano measure 1.2 was adopted to measure the pores’ size. During analysis, the work mainly focused on the relationship of pores in re–melted zone associated with that preexisting in the base metal. The results showed that: porosity in die cast magnesium alloy base metal showed apparently hereditary characteristic in the process of re–melting. Porosity preexisting in the die casting AZ91D magnesium alloy was mainly produced at the junction region of multi–grains, with high pressure of inner gas, small size and irregularity in shape. However, pores in the re–melting zone showed diversity. Specifically, the micro–pore was small in size, nearly round in cross section and smooth in the inner wall, which was induced by hydrogen stored in the base metal. The macro–pores were vermiculate, with gas channel and metal erosion traces at the inner wall. It’s considered that the micro–pore was mainly inherited from the atomic hydrogen solution in the base metal and molecular hydrogen stored in the die casting defects. In the re–melting process, gas bubble of hydrogen was formed through nucleation and development two steps, and there was no sufficient time to grow up. As a result, the hydrogen induced pore was great in number and small in size. While the macro–pores were inherited from porosity preexisting in the base metal, the corresponded gas bubble did not require nucleation, was directly formed from the involved gas in preexisting porosity during die–casting process. Development of gas bubble for macro–pore mainly was coalescence of small gas bubbles, which made the macro–pore show channel and crude in the inner wall. Furthermore, formation mechanism of the two types of pores were analyzed, and mathematical model on relationship of macro–pore in re–melted zone associated with that in the base metal was established.

Key wordsdie casting magnesium alloy    laser re–melting    pore    inheritance mechanism
收稿日期: 2012-04-28     
ZTFLH:  TG 146.7  
基金资助:

国家自然科学基金青年基金项目51105393, 中央高校基本科研业务基金项目CDJXS11132226, 以及重庆大学大型仪器设备开放基金项目2011121508资助

作者简介: 王向杰, 男, 1980年生, 博士生

[1] Pan J L. Electr Weld Mach, 2005; 35(9): 1

(潘际銮. 电焊机, 2005; 35(9): 1)

[2] Shan J G, Zhang J, Zheng S Q, Chen W Z, Ren J L. Acta Metall Sin, 2009; 45: 1006

(单际国, 张靖, 郑世卿, 陈武柱, 任家烈. 金属学报, 2009; 45: 1006)

[3] Chen Z H, Yan H G, Chen J HMagnesium Alloys. Beijing: Chemical Industry Press, 2004: 38

(陈振华, 严红革, 陈吉华. 镁合金. 北京: 化学工业出版社, 2004: 38)

[4] Zhao H, Debroy T. Weld J, 2001; 80(8): 204

[5] Wahba M, Mizutani M, Kawahito Y, Katayama S. Mater Des, 2012; 33: 569

[6] Shan J G, Zhang J, Zheng S Q, Chen W Z, Ren J L. Rare Met Mater Eng, 2009; 38(S3): 234

(单际国, 张靖, 郑世卿, 陈武柱, 任家烈. 稀有金属材料与工程, 2009; 38(S3): 234)

[7] Zhang J, Shan J G, Wen P, Ren J L. Chin J Lasers, 2011; 38(6): 1

(张靖, 单际国, 温鹏, 任家烈. 中国激光, 2011; 38(6): 1)

[8] Zhang J, Shan J G, Wen P, Ren J L. Trans China Weld Inst, 2011; 32(5): 17

(张靖, 单际国, 温鹏, 任家烈. 焊接学报, 2011; 32(5): 17)

[9] You G Q, Zhu J H, Guo Q, Long S Y. Spec Cast Nonferrous Alloys, 2009; 29: 729

(游国强, 朱觉华, 郭 强, 龙思远. 特种铸造及有色合金, 2009; 29: 729)

[10] Wu J T, You G Q, Guo Q, Long S Y. Hot Work Technol, 2011; 40(1): 117

(武靖亭, 游国强, 郭强, 龙思远. 热加工工艺, 2011; 40(1): 117)

[11] Shen J, You G Q, Long S Y, Pan F S. Mater Charact, 2008; 59: 1059

[12] Min D, Shen J, Lai S Q, Chen J, Xu N, Liu H. Opt Laser Eng, 2011; 49(1): 89

[13] Liao H M. Master Dissertation, Chongqing University, 2006

(廖慧敏. 重庆大学硕士学位论文, 2006)

[14] Xu S X, Wu S S, Li Q. Light Met, 2008; (8): 43

(许四祥, 吴树森, 李庆. 轻金属, 2008; (8): 43)

[15] Xu S X, Wu S S, Mao Y W. Spec Cast Nonferrous Alloys, 2007; 27: 11

(许四祥, 吴树森, 毛有武. 特种铸造及有色合金, 2007; 27: 11)

[16] Cao X, Jahazi M, Immarigeon J P, Wallace W. J Mater Process Technol, 2006; 171: 188

[17] Yu K, Nakata K, Liao J. Sci Technol Weld Join, 2009; 14: 554

[18] Renzhi M, Yoshio B. Chem Phys Lett, 2003; 370: 770

[19] Tadao S, Hideo H, Tadashi E, Osamu F, Minoru L. J Mater Sci, 1981; 16: 1829

[20] Jia Z, Zhang Z Q, Yue Q C, Cui J Z. Foundry, 2011; 60: 635

(贾征, 张志强, 乐启炽, 崔建忠. 铸造, 2011; 60: 635)

[21] Zeng K, Klassen T, Oelerich W, Bormann R. Int J Hydrogen Energ, 1999; 24: 989

[22] Kimio K, Robert D, Pzhcke D. Metall Trans, 1985; 16B:359

[23] Poirrer D K, Yeum K, Maples A L. Metall Trans, 1987;18: 1979

[24] Wang X J, You G Q, Yang Z, Long S Y. Rare Met Mater Eng, 2012; 12 (accepted)

(王向杰, 游国强, 杨智, 龙思远. 稀有金属材料与工程, 2012; 12 (已接收))

[25] Chi C T, Chao C G, Liu T F, Wang C C. Sci Technol Weld Join, 2008; 13: 199

[26] German D, Dmitriy D. Surface Phenomena in Fusion Welding Processes. German: CRC Press Taylor&Francis Group, 2006: 262

[27] Triantafyllidis D, Li L, Stott F H. Appl Surf Sci, 2003; 208–209: 458

[1] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[2] 王理林, 林鑫, 王永辉, 宇红雷, 黄卫东. 激光重熔熔池凝固组织的实时观察研究[J]. 金属学报, 2015, 51(4): 492-498.
[3] 喻程, 吴圣川, 胡雅楠, 张卫华, 付亚楠. 铝合金熔焊微气孔的三维同步辐射X射线成像*[J]. 金属学报, 2015, 51(2): 159-168.
[4] 卓伟佳, 刘源, 李言祥. 单室Gasar工艺中抽拉速率对藕状多孔Cu气孔形貌的影响*[J]. 金属学报, 2014, 50(8): 921-929.
[5] 李再久, 金青林, 杨天武, 周荣, 蒋业华. 金属-氢共晶定向凝固热力学模型*[J]. 金属学报, 2014, 50(4): 507-514.
[6] 武会宾, 武凤娟, 杨善武, 唐荻. 微米/亚微米双峰尺度奥氏体组织形成机制*[J]. 金属学报, 2014, 50(3): 269-274.
[7] 李正扬,朱鸣芳,戴挺. Al-7%Si合金显微气孔形成的模拟研究[J]. 金属学报, 2013, 49(9): 1032-1040.
[8] 杨高林,林鑫,胡桥,宋梦华,汪志太,黄卫东. 试样温度对激光重熔Zr55Cu30Al10Ni5块体非晶合金晶化的影响[J]. 金属学报, 2013, 49(8): 925-931.
[9] 郭雄,林鑫,汪志太,曹永青,彭东剑,黄卫东. 深过冷Ni-30Sn合金凝固组织演化及反常共晶的形成机制[J]. 金属学报, 2013, 29(4): 475-482.
[10] 陈高,高子英. 焊接工艺参数对低碳钢CO2激光深熔焊接气孔形成的影响[J]. 金属学报, 2013, 49(2): 181-186.
[11] 单际国 张婧 郑世卿 陈武柱 任家烈. 压铸镁合金激光焊气孔形成原因的实验研究[J]. 金属学报, 2009, 45(8): 1006-1012.
[12] 王雪; 李言祥; 刘源 . 放射状规则多孔金属的孔分布结构[J]. 金属学报, 2007, 42(1): 6-10 .
[13] 张华伟; 李言祥; 刘源 . 藕状规则多孔Cu气孔率的理论预测[J]. 金属学报, 2006, 42(11): 1165-1170 .
[14] 潘春旭; Y.M.Zhang; A.T.Male . 双面电弧焊的凝固组织特征[J]. 金属学报, 2002, 38(4): 427-432 .
[15] 田艳红; 王春青 . 激光重熔PBGA钎料球与Au/Ni/Cu焊盘的界面反应[J]. 金属学报, 2002, 38(1): 95-98 .