Please wait a minute...
金属学报  2011, Vol. 47 Issue (1): 7-16    DOI: 10.3724/SP.J.1037.2010.00313
  论文 本期目录 | 过刊浏览 |
铝合金挤压铸造过程微观孔洞形成的建模与仿真
韩志强1), 李金玺1), 杨文1), 赵海东2), 柳百成1,3)
1) 清华大学机械工程系, 先进成形制造教育部重点实验室, 北京 100084
2) 华南理工大学机械与汽车工程学院, 广州 510640 
3) 清华大学汽车工程系, 汽车安全与节能国家重点实验室, 北京 100084
MODELING AND SIMULATION ON MICROPOROSITY FORMED DURING SQUEEZE CASTING OF ALUMINUM ALLOY
HAN Zhiqiang1),  LI Jinxi1),  YANG Wen1),  ZHAO Haidong2),  LIU Baicheng1,3)
1) Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2) School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 
3) State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University,  Beijing 100084
引用本文:

韩志强 李金玺 杨文 赵海东 柳百成. 铝合金挤压铸造过程微观孔洞形成的建模与仿真[J]. 金属学报, 2011, 47(1): 7-16.
, , . MODELING AND SIMULATION ON MICROPOROSITY FORMED DURING SQUEEZE CASTING OF ALUMINUM ALLOY[J]. Acta Metall Sin, 2011, 47(1): 7-16.

全文: PDF(1384 KB)  
摘要: 基于挤压铸造过程微观孔洞的形成机理, 建立了模拟铝合金挤压铸造过程微观孔洞的数学模型. 该模型考虑了传热、凝固收缩、补缩流动、压力传递、氢(H)的再分配等因素, 通过计算凝固收缩导致的补缩流动与压力降低, 以及挤压过程的压力传递, 获得挤压铸造过程糊状区的压力分布, 结合微观孔洞形成条件及H的守恒方程, 计算微观孔洞的体积分数. 对不同工艺条件下铝合金挤压铸造微观孔洞进行了模拟计算, 计算结果与实验结果基本吻合. 计算结果还表明, 适当提高模具温度和挤压压力有利于减少微观孔洞缺陷.
关键词 铝合金挤压铸造 微观孔洞建模与仿真    
Abstract:A mathematical model for simulating the microporosity in squeeze casting of aluminum alloy has been developed, in which the heat transfer, solidification shrinkage, feeding flow, pressure transfer, and hydrogen conservation were taken into account. The shrinkage induced flow and the pressure drop in the mushy zone were calculated by solving continuity and momentum equations. A mechanical model was solved for obtaining the pressure transferred into the central area of the casting. By coupling the pressure drop with the pressure transferred into the central area, the pressure distribution in the mushy zone was calculated. Based on the hydrogen conservation equation, the microporosity volume fraction was calculated by referring to the pressure value in the mushy zone. The squeeze casting processes of aluminum alloy under different process conditions were simulated and the simulation results were compared with experimental results. It was shown that the simulation results agree well with the experimental results, and the increases in applied pressure and mould temperature tend to reduce the microporosity in the castings.
Key wordsaluminum alloy    squeeze casting    microporosity    modeling and simulation
收稿日期: 2010-06-30     
基金资助:

国家自然科学基金项目50675113和50875143资助

作者简介: 韩志强, 男, 1968年生, 副教授, 博士
[1] Ghomashchi M R, Vikhrov A. J Mater Process Technol, 2000; 101: 1

[2] Qi P X. Spec Cast Nonferrous Alloys, 1998; 18(4): 32

(齐丕骧. 特种铸造及有色合金, 1998; 18(4): 32)

[3] Luo S J, Chen B G, Qi P X. Liquid Forging and Squeeze Casting Technology. Beijing: Chemical Industry Press, 2007: 1

(罗守靖, 陈炳光, 齐丕骧. 液态模锻与挤压铸造技术. 北京: 化学工业出版社, 2007: 1)

[4] Major J F. AFS Trans, 1998; 105: 901

[5] Samuel A M, Samuel F H. Metall Mater Trans, 1995; 26A: 2359

[6] Lee C D. Mater Sci Eng, 2007; A464: 249

[7] Lee P D, Chirazi A, See D. J Light Met, 2001; (1): 15

[8] Stefanescu D M. Int J Cast Met Res, 2005; 18(3): 129

[9] Gui Z L, Dai T, Zhu M F. Spec Cast Nonferrous Alloys, 2007; 27: 766

(桂仲林, 戴挺, 朱鸣芳. 特种铸造及有色合金, 2007; 27: 766)

[10] Kubo K, Pehlke R D. Metall Trans, 1985; 16B: 359

[11] Poirier D R, Yeum K, Maples A L. Metall Trans, 1987; 18A: 1979

[12] Shivkumar S, Apelian D, Zou J. AFS Trans, 1990; 98: 897

[13] Sabau A S, Viswanathan S. Metall Mater Trans, 2002; 33B: 243

[14] Pequet C H, Gremaud M, Rappaz M. Metall Mater Trans, 2002; 33A: 2095

[15] Zhao H D, Wu C Z, Li Y Y, Ohnaka I. Acta Metall Sin, 2008; 44: 1340

(赵海东, 吴朝忠, 李元元, 大中逸雄. 金属学报, 2008; 44: 1340)

[16] Atwood R C, Sridhar S, Zhang W, Lee P D. Acta Mater, 2000; 48: 405

[17] Lee P D, Chirazi A, Atwood R C, Wang W. Mater Sci Eng, 2004; A365: 57

[18] Wang J S, Lee P D. Int J Cast Met Res, 2007; 20(3): 151

[19] Backer G, Wang Q G. Metall Mater Trans, 2007; 38B: 533

[20] Carlson K D, Lin Z P, Beckermann C. Metall Mater Trans, 2007; 38B: 541

[21] Han Z Q, Zhu W, Liu B C. Acta Metall Sin, 2009; 45: 356

(韩志强, 朱维, 柳百成. 金属学报, 2009 45: 356)

[22] Zhu W, Han Z Q, Liu B C. Acta Metall Sin, 2009 45: 363

(朱维, 韩志强, 柳百成. 金属学报, 2009; 45: 363)

[23] Anyalebechi P N. Acta Metall, 1995; 33: 1209

[24] Lewis R W, Han Z Q, Gethin D T. C R Mec, 2007: 335: 287

[25] Yang W, Li J X, Han Z Q, Zhao H D, Liu B C. Spec Cast Nonferrous Alloys, 2010; 30: 54

(杨文, 李金玺, 韩志强, 赵海东, 柳百成. 特种铸造及有色合金, 2010; 30: 54)
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[4] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] 宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 粗糙表面高强铝合金导线疲劳寿命预测[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] 王春辉, 杨光昱, 阿热达克·阿力玛斯, 李晓刚, 介万奇. 砂型3DP打印参数对ZL205A合金铸造性能的影响[J]. 金属学报, 2022, 58(7): 921-931.
[7] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[8] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[9] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.
[10] 王冠杰, 李开旗, 彭力宇, 张壹铭, 周健, 孙志梅. 高通量自动流程集成计算与数据管理智能平台及其在合金设计中的应用[J]. 金属学报, 2022, 58(1): 75-88.
[11] 赵婉辰, 郑晨, 肖斌, 刘行, 刘璐, 余童昕, 刘艳洁, 董自强, 刘轶, 周策, 吴洪盛, 路宝坤. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化[J]. 金属学报, 2021, 57(6): 797-810.
[12] 孙佳孝, 杨可, 王秋雨, 季珊林, 包晔峰, 潘杰. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报, 2021, 57(5): 665-674.
[13] 陈军洲, 吕良星, 甄良, 戴圣龙. AA 7055铝合金时效析出强化模型[J]. 金属学报, 2021, 57(3): 353-362.
[14] 刘刚, 张鹏, 杨冲, 张金钰, 孙军. 铝合金中的溶质原子团簇及其强韧化[J]. 金属学报, 2021, 57(11): 1484-1498.
[15] 李吉臣, 冯迪, 夏卫生, 林高用, 张新明, 任敏文. 非等温时效对7B50铝合金组织及性能的影响[J]. 金属学报, 2020, 56(9): 1255-1264.