Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2025.00036
  本期目录 | 过刊浏览 |
振动辅助热成形工艺同步提升低合金钢的力学性能与抗氢脆性能

梁伦速1,4  孙明翰2  聂 雄2  张新军1,4  王 刚1,4  刘晓华3  李凌霄1,3,4

1 郑州大学 机械与动力工程学院  郑州 450001

2 华中科技大学 材料科学与工程学院  武汉 430074

3 香港中文大学 机械与自动化工程系  香港 999077

4 抗疲劳制造产业技术研究院  郑州 450016

Synergistically Enhancing the Mechanical Properties and Hydrogen Embrittlement Resistance of Low Alloy Steels via Vibration-Assisted Thermoforming Process
LIANG Lunsu 1,4, SUN Minghan 2, NIE Xiong 2, ZHANG Xinjun 1,4, WANG Gang 1,4, LIU Xiaohua 3, LI Lingxiao 1,3,4

1. School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, 450001, China

2. School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

3. Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China

4. Industrial Science &Technology Institute for Anti-fatigue Manufacturing, Zhengzhou, 450016, China

引用本文:

梁伦速 孙明翰 聂雄 张新军 王刚 刘晓华 李凌霄. 振动辅助热成形工艺同步提升低合金钢的力学性能与抗氢脆性能[J]. 金属学报, 10.11900/0412.1961.2025.00036.

全文: PDF(3075 KB)  
摘要: 
为了提升低合金钢的力学性能和抗氢脆性能,开发有效的氢脆预控方法,本工作采用自行研发的机械振动辅助热成形工艺及设备,利用振动场引入的物理行为实现氢陷阱的构建,以提高锻造钢的力学性能和降低氢脆敏感性。结果表明,机械振动辅助热成形工艺能够协同提高锻件的力学性能和抗氢脆性能,强度提高了53.9%,塑性提高了48.9%,氢脆敏感性降低了15.1%。实验结果和计算结果表明,力学性能和抗氢脆性能的增强与晶粒细化、位错均匀化、析出相弥散分布和晶内滑移带的作用密切相关。
关键词 振动辅助热成形合金钢氢脆    
Abstract

Hydrogen embrittlement (HE) remains a critical issue in industrial applications and academic research, particularly for low-alloy steels. To address this issue, this study developed a novel mechanical vibration-assisted thermoforming process, accompanied by self-developed equipment, to improve the mechanical properties and HE resistance of forged steels. The physical behaviours induced by the vibration field were leveraged to effectively generate hydrogen traps, thereby considerably improving mechanical performance and reducing HE sensitivity. Results revealed that the mechanical vibration-assisted process synergistically enhanced the strength and ductility of the forged samples while mitigating their HE susceptibility. In particular, the strength of the vibration-treated samples increased by 53.9% to 1330 MPa, while their ductility improved by 48.9%. Notably, the strength–elongation product increased by 131.0%, indicating a balanced enhancement in both properties. After H-precharging, HE sensitivity—characterised by the loss in elongation—decreased from 72.68 for the non-vibration samples to 63.14 for the vibration-treated samples, indicating a 15.1% reduction. Similarly, HE sensitivity based on area reduction declined from 71.15 to 60.57, demonstrating a 14.87% decrease. These findings highlight the effectiveness of the mechanical vibration-assisted process in improving both mechanical properties and HE resistance. To elucidate the underlying mechanisms, advanced characterisation techniques, including SEM, EBSD, FIB, and TEM, were employed. Based on the characterisation results, the improved strength of the vibration-treated samples was attributed to refined grain structures, uniformly distributed dislocations, finely dispersed precipitates and numerous slip bands within the grains. The primary strengthening mechanisms included grain boundary, dislocation and precipitation strengthening, with grain boundary and dislocation effects contributing prominently. Moreover, the stable structures formed by slip bands and grain boundaries further reinforced the overall strength. Fractographic analysis revealed conspicuous differences between the vibration-treated and non-vibration samples. The non-vibration samples exhibited brittle fracture features, including cleavage planes and intergranular cracks, while the vibration-treated samples displayed a mixed morphology of dimples and quasi-cleavage, indicative of enhanced toughness. TEM observations of the fracture zones in the vibration-treated samples revealed high-density dislocations and severe plastic deformation near the crack tips, suggesting the concurrent operation of hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced local plasticity (HELP) mechanisms during HE. In contrast, the non-vibration samples primarily exhibited HEDE, with hydrogen accumulation at precipitates and grain boundaries initiating and propagating secondary cracks, ultimately leading to brittle fracture. The reduced HE sensitivity of the vibration-treated samples was primarily attributed to the mitigation of conditions conducive to the HEDE and HELP mechanisms. Uniformly distributed dislocations, grains and precipitates promoted the dispersion of hydrogen and limited its accumulation at grain boundaries. Furthermore, interactions between hydrogen and slip bands broadened dislocation migration zones, enhancing resistance to hydrogen-induced cracking. In conclusion, this study presents a new approach for developing HE-resistant materials through mechanical vibration-assisted thermoforming. This process not only enhances the mechanical properties of forged steels but also considerably reduces their HE susceptibility, providing valuable guidance for industrial applications and future research in materials science and engineering.


Key wordsVibration-assisted thermoforming    Alloy teel    Hydrogen embrittlement.
收稿日期: 2025-02-13     
ZTFLH:  TG17  
基金资助:国家自然科学基金;国家自然科学基金
[1] 杨波, 陈小亮, 史晓斌, 任伟, 高恒, 宋广生. 稀土Y掺杂V-Cr合金增塑机理及透氢性能[J]. 金属学报, 2025, 61(6): 887-899.
[2] 梁炫, 侯廷平, 张东, 谭昕暘, 吴开明. 中碳Nb合金化钢液析碳化物的析出行为[J]. 金属学报, 2025, 61(4): 653-664.
[3] 闫茂鑫, 李杰, 王哲超, 姚旭, 胡秉晨, 葛峰, 崔中雨, 王昕, 崔洪芝. 南极大气环境下Q460Q690 低合金钢的腐蚀行为[J]. 金属学报, 2025, 61(2): 297-308.
[4] 苏帅, 韩鹏, 杨善武, 王华, 金耀辉, 尚成嘉. Ni含量对高强度低合金钢淬透性影响的晶体学认识[J]. 金属学报, 2024, 60(6): 789-801.
[5] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[6] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[7] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[8] 肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
[9] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[10] 朱雯婷, 崔君军, 陈振业, 冯阳, 赵阳, 陈礼清. 690 MPa级高强韧低碳微合金建筑结构钢设计及性能[J]. 金属学报, 2021, 57(3): 340-352.
[11] 李金许,王伟,周耀,刘神光,付豪,王正,阚博. 汽车用先进高强钢的氢脆研究进展[J]. 金属学报, 2020, 56(4): 444-458.
[12] 刘振宝,梁剑雄,苏杰,王晓辉,孙永庆,王长军,杨志勇. 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[13] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[14] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[15] 邹佳男, 庞晓露, 高克玮. 低合金钢X70和3Cr在超临界CO2环境中的缝隙腐蚀[J]. 金属学报, 2018, 54(4): 537-546.