|
|
稀土Y掺杂V-Cr合金增塑机理及透氢性能 |
杨波1, 陈小亮1, 史晓斌1, 任伟2,3, 高恒3, 宋广生1( ) |
1 安徽工业大学 材料科学与工程学院 先进金属材料绿色制备教育部重点实验室 马鞍山 243032 2 上海大学 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444 3 上海大学 理学院 物理系 国际量子与分子结构中心 上海 200444 |
|
Softening Mechanism and Hydrogen Permeability of Rare Earth Y-Doped V-Cr Alloys |
YANG Bo1, CHEN Xiaoliang1, SHI Xiaobin1, REN Wei2,3, GAO Heng3, SONG Guangsheng1( ) |
1 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China 2 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China 3 International Center for Quantum and Molecular Structures, Physics Department, College of Sciences, Shanghai University, Shanghai 200444, China |
引用本文:
杨波, 陈小亮, 史晓斌, 任伟, 高恒, 宋广生. 稀土Y掺杂V-Cr合金增塑机理及透氢性能[J]. 金属学报, 2025, 61(6): 887-899.
Bo YANG,
Xiaoliang CHEN,
Xiaobin SHI,
Wei REN,
Heng GAO,
Guangsheng SONG.
Softening Mechanism and Hydrogen Permeability of Rare Earth Y-Doped V-Cr Alloys[J]. Acta Metall Sin, 2025, 61(6): 887-899.
1 |
Zhang Y S, Dong D, Xiao Y, et al. Current status and trends in energy production, consumption, and storage under carbon neutrality conditions in China [J]. Chin. Sci. Bull., 2021, 66: 4466
|
1 |
张永生, 董 舵, 肖 逸 等. 我国能源生产、消费、储能现状及碳中和条件下变化趋势 [J]. 科学通报, 2021, 66: 4466
|
2 |
Cao J W, Zhang W Q, Li Y F, et al. Current status of hydrogen production in China [J]. Prog. Chem., 2021, 33: 2215
doi: 10.7536/PC201128
|
2 |
曹军文, 张文强, 李一枫 等. 中国制氢技术的发展现状 [J]. 化学进展, 2021, 33: 2215
|
3 |
Li X G. Status and development of hydrogen preparation, storage and transportation [J]. Chin. Sci. Bull., 2022, 67: 425
|
3 |
李星国. 氢气制备和储运的状况与发展 [J]. 科学通报, 2022, 67: 425
|
4 |
Li Z Y, Huang W, Zhang C F. Research progress on high purity hydrogen purification technology for fuel cell [J]. Energy Chem. Ind., 2020, 41(5): 1
|
4 |
李忠于, 黄 伟, 张楚璠. 燃料电池用高纯氢纯化技术研究进展 [J]. 能源化工, 2020, 41(5): 1
|
5 |
Jiang P, Huang H C, Sun B L, et al. Microstructure, mechanical properties and hydrogen permeability of multiphase V-Ti-Ni alloy membranes [J]. Mater. Today Commun., 2020, 24: 101112
|
6 |
Dolan M D. Non-Pd BCC alloy membranes for industrial hydrogen separation [J]. J. Membr. Sci., 2010, 362: 12-28
|
7 |
Griessen R, Riesterer T. Heat of formation models [A]. Hydrogen in Intermetallic Compounds I [M]. Berlin: Springer, 1988: 219
|
8 |
Suzuki A, Yukawa H, Ijiri S, et al. Alloying effects on hydrogen solubility and hydrogen permeability for V-based alloy membranes [J]. Mater. Trans., 2015, 56: 1688
|
9 |
Dolan M D, Kellam M E, McLennan K G, et al. Hydrogen transport properties of several vanadium-based binary alloys [J]. Int. J. Hydrogen Energy, 2013, 38: 9794
|
10 |
Dolan M D, McLennan K G, Way J D. Diffusion of atomic hydrogen through V-Ni alloy membranes under nondilute conditions [J]. J. Phys. Chem., 2012, 116C: 1512
|
11 |
Yukawa H, Nambu T, Matsumoto Y. V-W alloy membranes for hydrogen purification [J]. J. Alloys Compd., 2011, 509: S881
|
12 |
Li X Z, Huang F F, Liu D M, et al. V-Cr-Cu dual-phase alloy membranes for hydrogen separation: An excellent combination of ductility, hydrogen permeability and embrittlement resistance [J]. J. Membr. Sci., 2017, 524: 354
|
13 |
Li X Z, Huang F F, Su Y Q, et al. Development of dual-phase V90Fe5Al5/Cu alloys for enhanced malleability and sustainable hydrogen permeability [J]. J. Membr. Sci., 2019, 591: 117325
|
14 |
Ishikawa K, Tokui S, Aoki K. Microstructure and hydrogen permeation of cold rolled and annealed Nb40Ti30Ni30 alloy [J]. Intermetallics, 2009, 17: 109
|
15 |
Li X Z, Liu D M, Liang X, et al. Hydrogen transport behavior of as-cast, cold rolled and annealed Nb40Ti30Co30 alloy membranes [J]. J. Membr. Sci., 2016, 514: 294
|
16 |
Tang H X, Ishikawa K, Aoki K. Changes in hydrogen permeability and microstructures of Nb-(Ti, Zr)Ni alloys by cold rolling and annealing [J]. Mater. Trans., 2007, 48: 2454
|
17 |
Kato T, Ishikawa K, Aoki K. Effect of Ti/Ni ratio and annealing on microstructure and hydrogen permeability of Nb-TiNi alloy [J]. Mater. Trans., 2008, 49: 2214
|
18 |
Kainuma T, Iwao N, Suzuki T, et al. Effects of oxygen, nitrogen and carbon additions on the mechanical properties of vanadium and V/Mo alloys [J]. J. Nucl. Mater., 1979, 80: 339
|
19 |
Zhang J, Han W Z. Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium [J]. Acta Mater., 2020, 196: 122
doi: 10.1016/j.actamat.2020.06.023
|
20 |
Kurtz R J, Hamilton M L, Li H. Grain boundary chemistry and heat treatment effects on the ductile-to-brittle transition behavior of vanadium alloys [J]. J. Nucl. Mater., 1998, 258-263: 1375
|
21 |
Xu L Q, Hu X P, Jiang S N, et al. Study on microstructure and mechanical properties of Y2O3 particle reinforced vanadium alloy [J]. Hot Work. Technol., 2021, 50(22): 50
|
21 |
徐立群, 胡心平, 姜少宁 等. Y2O3颗粒增强钒合金的组织及力学性能的研究 [J]. 热加工工艺, 2021, 50(22): 50
|
22 |
Smith J F, Bailey D M, Carlson O N. The Cr-V (chromium-vanadium) system [J]. J. Phase Equilib., 1982, 2: 469
|
23 |
Massalski T B, Murray J L, Bennett L H, et al. Binary Alloy Phase Diagrams (Volume 2) [M]. Metals Park, Ohio: American Society for Metals, 1986: 2154
|
24 |
Venkatraman M, Neumann J P. The Cr-Y (Chromium-yttrium) system [J]. Bull. Alloy Phase Diagr., 1985, 6: 429
|
25 |
Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys [J]. Mater. Res. Bull., 2001, 36: 2183
|
26 |
Deng L, Zhang X M, Tang J F, et al. First-principles study of the binding preferences and diffusion behaviors of solutes in vanadium alloys [J]. J. Alloys Compd., 2016, 660: 55
|
27 |
Kuwabara T, Kurishita H, Hasegawa M. Development of an ultra-fine grained V-1.7 mass% Y alloy dispersed with yttrium compounds having superior ductility and high strength [J]. Mater. Sci. Eng., 2006, A417: 16
|
28 |
Kurishita H, Kuwabara T, Hasegawa M. Development of fine-grained V-28Cr-2.3 Y and V-52Cr-1.8Y alloys with superior mechanical properties [J]. Mater. Sci. Eng., 2006, A433: 32
|
29 |
Gordy W, Thomas W J O. Electronegativities of the elements [J]. J. Chem. Phys., 1956, 24: 439
|
30 |
Carlson O N. The O-Y (oxygen-yttrium) system [J]. Bull. Alloy Phase Diagr., 1990, 11: 61
|
31 |
Iwao N, Kainuma T, Suzuki T, et al. Ductility of V-Cr and V-Cr-Zr alloy ingots [J]. J. Less-Common Met., 1981, 79: 19
|
32 |
Kim K H, Park H C, Lee J, et al. Vanadium alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement [J]. Scr. Mater., 2013, 68: 905
|
33 |
Paglieri S N, Wermer J R, Buxbaum R E, et al. Development of membranes for hydrogen separation: Pd coated V-10Pd [J]. Energy Mater., 2008, 3: 169
|
34 |
Alexander D G, Carlson O N. The V-VO phase system [J]. Metall. Trans., 1971, 2: 2805
|
35 |
Yu J Q, Yi W Z, Chen B D, et al. Binary Alloy Phase-Diagrams [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1987: 547
|
35 |
虞觉奇, 易文质, 陈邦迪 等. 二元合金状态图集 [M]. 上海: 上海科学技术出版社, 1987: 547
|
36 |
Zhang P B, Zhao J J, Zou T T, et al. A review of solute-point defect interactions in vanadium and its alloys: First-principles modeling and simulation [J]. Tungsten, 2021, 3: 38
|
37 |
Qin J Y, Wang Z M, Wang D H, et al. Dissolution, diffusion, and penetration of H in the group VB metals investigated by first-principles method [J]. Int. J. Hydrogen Energy, 2019, 44: 29083
|
38 |
Heo N J, Nagasaka T, Muroga T, et al. Effect of impurity levels on precipitation behavior in the low-activation V-4Cr-4Ti alloys [J]. J. Nucl. Mater., 2002, 307-311: 620
|
39 |
Bradford S A. The effect of oxygen on physical and mechanical properties of vanadium [D]. Iowa: Iowa State University, 1961
|
40 |
Beale H A, Arsenault R J. The preparation and some mechanical properties of high-purity vanadium [J]. Metall. Trans., 1970, 1: 3355
|
41 |
Yang P J, Li Q J, Tsuru T, et al. Mechanism of hardening and damage initiation in oxygen embrittlement of body-centred-cubic niobium [J]. Acta Mater., 2019, 168: 331
|
42 |
Dutta A. Compressive deformation of Fe nanopillar at high strain rate: Modalities of dislocation dynamics [J]. Acta Mater., 2017, 125: 219
|
43 |
Lee H J, Wirth B D. Molecular dynamics simulation of dislocation-void interactions in BCC Mo [J]. J. Nucl. Mater., 2009, 386-388: 115
|
44 |
Zhang X M, Li Y F, He Q L, et al. Investigation of the interstitial oxygen behaviors in vanadium alloy: A first-principles study [J]. Curr. Appl. Phys., 2018, 18: 183
|
45 |
Jo M G, Madakashira P P, Suh J Y, et al. Effect of oxygen and nitrogen on microstructure and mechanical properties of vanadium [J]. Mater. Sci. Eng., 2016, A675: 92
|
46 |
Diercks D R, Loomis B A. Alloying and impurity effects in vanadium-base alloys [J]. J. Nucl. Mater., 1986, 141-143: 1117
|
47 |
Zhang P B, Li X J, Zhao J J, et al. Atomic investigation of alloying Cr, Ti, Y additions in a grain boundary of vanadium [J]. J. Nucl. Mater., 2016, 468: 147
|
48 |
Lee S, Yi Y, Bee P. First-principles study of segregation behavior of Cr/Ti/Y at grain boundary in vanadium [J]. Int. J. Mater. Mech. Manuf., 2018, 6: 31
|
49 |
Huang F F, Li X Z, Shan X R, et al. Hydrogen transport through the V-Cr-Al alloys: Hydrogen solution, permeation and thermal-stability [J]. Sep. Purif. Technol., 2020, 240: 116654
|
50 |
Lu Y L, Gou M M, Bai R M, et al. First-principles study of hydrogen behavior in vanadium-based binary alloy membranes for hydrogen separation [J]. Int. J. Hydrogen Energy, 2017, 42: 22925
|
51 |
Griessen R, Riesterer T. Heat of formation models [A]. Hydrogen in Intermetallic Compounds I: Electronic, Thermodynamic, and Crystallographic Properties, Preparation [M]. Berlin: Springer, 1988: 219
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|