Please wait a minute...
金属学报  2025, Vol. 61 Issue (6): 887-899    DOI: 10.11900/0412.1961.2023.00346
  研究论文 本期目录 | 过刊浏览 |
稀土Y掺杂V-Cr合金增塑机理及透氢性能
杨波1, 陈小亮1, 史晓斌1, 任伟2,3, 高恒3, 宋广生1()
1 安徽工业大学 材料科学与工程学院 先进金属材料绿色制备教育部重点实验室 马鞍山 243032
2 上海大学 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
3 上海大学 理学院 物理系 国际量子与分子结构中心 上海 200444
Softening Mechanism and Hydrogen Permeability of Rare Earth Y-Doped V-Cr Alloys
YANG Bo1, CHEN Xiaoliang1, SHI Xiaobin1, REN Wei2,3, GAO Heng3, SONG Guangsheng1()
1 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China
2 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
3 International Center for Quantum and Molecular Structures, Physics Department, College of Sciences, Shanghai University, Shanghai 200444, China
引用本文:

杨波, 陈小亮, 史晓斌, 任伟, 高恒, 宋广生. 稀土Y掺杂V-Cr合金增塑机理及透氢性能[J]. 金属学报, 2025, 61(6): 887-899.
Bo YANG, Xiaoliang CHEN, Xiaobin SHI, Wei REN, Heng GAO, Guangsheng SONG. Softening Mechanism and Hydrogen Permeability of Rare Earth Y-Doped V-Cr Alloys[J]. Acta Metall Sin, 2025, 61(6): 887-899.

全文: PDF(5604 KB)   HTML
摘要: 

氢分离V100 - x Cr x (x = 8、10,原子分数,%,下同)合金冷轧时易开裂,难以室温加工成形,而稀土Y的掺杂有助于提高冷轧塑变能力,促进高通量氢分离钒合金膜的规模化低廉制备。在优良冷轧成形性能的基础上,研究透氢效率和抗氢脆使用寿命对开发新型高质量非钯合金膜具有重要理论意义和应用价值。本工作利用氧氮氢分析仪、XRD、SEM、TEM、EPMA、冷轧机、硬度计、拉伸机、氢渗透装置研究了Y对铸态氢分离V100 - x - y Cr x Y y合金(x = 8,y = 1;x = 10,y = 0、1、3)微观组织、冷轧成形性能、透氢性能和抗氢脆性能的影响,探究了V100 - x Cr x 合金脆化成因和V-Cr-Y合金增塑机理,并分析了V-Cr和V-Cr-Y合金膜组织形成和抗氢脆性能优劣的原因。结果表明,V-Cr合金为单相等轴晶组织,而Y的掺杂导致形成枝晶状固溶体与枝晶间细小颗粒的复合组织。二元V-Cr合金中Y的掺杂显著降低了合金的硬度,且大幅度提高了合金的冷轧成形性能。在3种含Y合金中,V91Cr8Y1合金的硬度(108.88 HV)最低,最大冷轧压下率(94.5%)最高。虽然V-Cr-Y合金的氢渗透率较无Y的低,但仍是商业化Pd77Ag23合金的2.5~3.0倍,且其抗氢脆性能远优于V-Cr合金,可缓冷至室温而不破裂。稀土Y作为俘获剂与体系中O和S作用形成第二相颗粒,产生净化除杂效应使基体软化,降低塑变成膜的阻力,从而成功制备出成形性能和抗氢脆性能优异的V-Cr-Y合金膜。

关键词 稀土元素成形性能增塑机理透氢性能抗氢脆性能    
Abstract

V100 - x Cr x (x = 8 or 10, atomic fraction, %) hydrogen-separation alloys undergo cracks during cold rolling and are difficult to be shaped via room temperature processing. However, the addition of rare-earth element Y can greatly improve their cold-rolling plastic deformation ability, facilitating the low-cost fabrication of V-based alloy membranes for hydrogen separation with high flux on a large scale. In order to achieve both high hydrogen-permeation efficiency and service life, insight into the hydrogen permeability and hydrogen-embrittlement resistance is required on the basis of excellent cold-rolling formability. In this work, the effects of Y addition on the microstructure, cold-rolling formability, hydrogen permeability, and hydrogen-embrittlement resistance of as-cast V100 - x - y Cr x Y y (x = 8, y = 1; x = 10, y = 0, 1, 3) hydrogen-separation alloys were studied using an oxygen-nitrogen-hydrogen analyzer, a cold-rolling machine, a hardness tester, a tension machine, and a hydrogen-permeation device as well as via XRD, SEM, TEM, and EPMA. In addition, the causes of the embrittlement of the V100 - x Cr x alloys and plasticization mechanism of V-Cr-Y alloys were explained. The microstructure formation and hydrogen-embrittlement resistance of V-Cr and V-Cr-Y alloys were also analyzed. Results showed that V-Cr alloys show a single-phase equiaxed grain microstructure, while V-Cr-Y alloys show a composite microstructure comprising a dendritic solid solution and secondary-phase particles located in the inter-dendritic region. The addition of Y in binary V-Cr alloys remarkably reduces the hardness, thereby greatly improving cold-rolling formability. Among the V91Cr8Y1, V89Cr10Y1, and V87Cr10Y3 alloys, V91Cr8Y1 showed the lowest hardness (108.88 HV) and highest maximum cold-rolling reduction rate (94.5%). Although the hydrogen permeability of the V-Cr-Y alloys was lower than those of Y-free alloys, it was still 2.5-3.0 times higher than those of commercial Pd77Ag23 alloys. Moreover, the V-Cr-Y alloys showed much better hydrogen-embrittlement resistance than those of V-Cr alloys and could be slowly cooled to room temperature without rupture. Rare-earth metal Y as a scavenger could react with O and S to form secondary-phase particles, exerting a purification effect, which softened the matrix and reduced the resistance of alloys to plastic deformation. Thus, high-performance V-Cr-Y alloy membranes with an excellent combination of formability and hydrogen-embrittlement resistance were prepared.

Key wordsrare earth element    formability    softening mechanism    hydrogen permeability    hydrogen embrittlement-resistant property
收稿日期: 2023-08-17     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目(51875002);省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室开放课题项目(SKLASS 2022-13);上海市科学技术委员会项目(19DZ2270200);先进金属材料绿色制备与表面技术教育部重点实验室开发课题项目(GFST2022KF08)
通讯作者: 宋广生,song_ahut@163.com,主要从事氢分离薄膜材料技术、高性能轻金属(Li、Mg、Al)材料研究
Corresponding author: SONG Guangsheng, professor, Tel: 13329182538, E-mail: song_ahut@163.com
作者简介: 杨 波,男,1997年生,博士
图1  室温拉伸试样尺寸示意图
图2  氢渗透装置示意图
图3  不同Cr、Y含量铸态钒合金的XRD谱
图4  不同Cr、Y含量的铸态钒合金的SEM像
图5  铸态V90Cr10合金晶界的TEM像、EDS结果、HRTEM像及快速Fourier变换(FFT)图
图6  铸态V87Cr10Y3合金相界的TEM像、EDS结果、HRTEM像及FFT图
图7  铸态V87Cr10Y3合金的BSE像和EPMA面扫描图
PointVCrYOS
10.745084.47114.7840
21.462098.1000.4370
386.63113.369000
表1  图7a中点1~3的EPMA点扫描结果 (mass fraction / %)
图8  不同Cr、Y含量铸态钒合金的室温冷轧方向示意图、冷轧实物图及冷轧试样OM像
图9  铸态V90Cr10和V87Cr10Y3合金拉伸断口SEM像和V87Cr10Y3合金拉伸应力-应变曲线
图10  铸态V-Cr和V-Cr-Y合金的硬度和最大冷轧压下率
图11  400 ℃下铸态V-Cr、V-Cr-Y和Pd77Ag23[33]合金膜的H渗透率
图12  铸态V-Cr和V-Cr-Y合金膜缓冷渗氢曲线
图13  铸态V-Cr和V-Cr-Y合金膜缓冷渗氢后的实物图
图14  V、Cr、Y氧化物和硫化物的Gibbs自由能变化(ΔG)
1 Zhang Y S, Dong D, Xiao Y, et al. Current status and trends in energy production, consumption, and storage under carbon neutrality conditions in China [J]. Chin. Sci. Bull., 2021, 66: 4466
1 张永生, 董 舵, 肖 逸 等. 我国能源生产、消费、储能现状及碳中和条件下变化趋势 [J]. 科学通报, 2021, 66: 4466
2 Cao J W, Zhang W Q, Li Y F, et al. Current status of hydrogen production in China [J]. Prog. Chem., 2021, 33: 2215
doi: 10.7536/PC201128
2 曹军文, 张文强, 李一枫 等. 中国制氢技术的发展现状 [J]. 化学进展, 2021, 33: 2215
3 Li X G. Status and development of hydrogen preparation, storage and transportation [J]. Chin. Sci. Bull., 2022, 67: 425
3 李星国. 氢气制备和储运的状况与发展 [J]. 科学通报, 2022, 67: 425
4 Li Z Y, Huang W, Zhang C F. Research progress on high purity hydrogen purification technology for fuel cell [J]. Energy Chem. Ind., 2020, 41(5): 1
4 李忠于, 黄 伟, 张楚璠. 燃料电池用高纯氢纯化技术研究进展 [J]. 能源化工, 2020, 41(5): 1
5 Jiang P, Huang H C, Sun B L, et al. Microstructure, mechanical properties and hydrogen permeability of multiphase V-Ti-Ni alloy membranes [J]. Mater. Today Commun., 2020, 24: 101112
6 Dolan M D. Non-Pd BCC alloy membranes for industrial hydrogen separation [J]. J. Membr. Sci., 2010, 362: 12-28
7 Griessen R, Riesterer T. Heat of formation models [A]. Hydrogen in Intermetallic Compounds I [M]. Berlin: Springer, 1988: 219
8 Suzuki A, Yukawa H, Ijiri S, et al. Alloying effects on hydrogen solubility and hydrogen permeability for V-based alloy membranes [J]. Mater. Trans., 2015, 56: 1688
9 Dolan M D, Kellam M E, McLennan K G, et al. Hydrogen transport properties of several vanadium-based binary alloys [J]. Int. J. Hydrogen Energy, 2013, 38: 9794
10 Dolan M D, McLennan K G, Way J D. Diffusion of atomic hydrogen through V-Ni alloy membranes under nondilute conditions [J]. J. Phys. Chem., 2012, 116C: 1512
11 Yukawa H, Nambu T, Matsumoto Y. V-W alloy membranes for hydrogen purification [J]. J. Alloys Compd., 2011, 509: S881
12 Li X Z, Huang F F, Liu D M, et al. V-Cr-Cu dual-phase alloy membranes for hydrogen separation: An excellent combination of ductility, hydrogen permeability and embrittlement resistance [J]. J. Membr. Sci., 2017, 524: 354
13 Li X Z, Huang F F, Su Y Q, et al. Development of dual-phase V90Fe5Al5/Cu alloys for enhanced malleability and sustainable hydrogen permeability [J]. J. Membr. Sci., 2019, 591: 117325
14 Ishikawa K, Tokui S, Aoki K. Microstructure and hydrogen permeation of cold rolled and annealed Nb40Ti30Ni30 alloy [J]. Intermetallics, 2009, 17: 109
15 Li X Z, Liu D M, Liang X, et al. Hydrogen transport behavior of as-cast, cold rolled and annealed Nb40Ti30Co30 alloy membranes [J]. J. Membr. Sci., 2016, 514: 294
16 Tang H X, Ishikawa K, Aoki K. Changes in hydrogen permeability and microstructures of Nb-(Ti, Zr)Ni alloys by cold rolling and annealing [J]. Mater. Trans., 2007, 48: 2454
17 Kato T, Ishikawa K, Aoki K. Effect of Ti/Ni ratio and annealing on microstructure and hydrogen permeability of Nb-TiNi alloy [J]. Mater. Trans., 2008, 49: 2214
18 Kainuma T, Iwao N, Suzuki T, et al. Effects of oxygen, nitrogen and carbon additions on the mechanical properties of vanadium and V/Mo alloys [J]. J. Nucl. Mater., 1979, 80: 339
19 Zhang J, Han W Z. Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium [J]. Acta Mater., 2020, 196: 122
doi: 10.1016/j.actamat.2020.06.023
20 Kurtz R J, Hamilton M L, Li H. Grain boundary chemistry and heat treatment effects on the ductile-to-brittle transition behavior of vanadium alloys [J]. J. Nucl. Mater., 1998, 258-263: 1375
21 Xu L Q, Hu X P, Jiang S N, et al. Study on microstructure and mechanical properties of Y2O3 particle reinforced vanadium alloy [J]. Hot Work. Technol., 2021, 50(22): 50
21 徐立群, 胡心平, 姜少宁 等. Y2O3颗粒增强钒合金的组织及力学性能的研究 [J]. 热加工工艺, 2021, 50(22): 50
22 Smith J F, Bailey D M, Carlson O N. The Cr-V (chromium-vanadium) system [J]. J. Phase Equilib., 1982, 2: 469
23 Massalski T B, Murray J L, Bennett L H, et al. Binary Alloy Phase Diagrams (Volume 2) [M]. Metals Park, Ohio: American Society for Metals, 1986: 2154
24 Venkatraman M, Neumann J P. The Cr-Y (Chromium-yttrium) system [J]. Bull. Alloy Phase Diagr., 1985, 6: 429
25 Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys [J]. Mater. Res. Bull., 2001, 36: 2183
26 Deng L, Zhang X M, Tang J F, et al. First-principles study of the binding preferences and diffusion behaviors of solutes in vanadium alloys [J]. J. Alloys Compd., 2016, 660: 55
27 Kuwabara T, Kurishita H, Hasegawa M. Development of an ultra-fine grained V-1.7 mass% Y alloy dispersed with yttrium compounds having superior ductility and high strength [J]. Mater. Sci. Eng., 2006, A417: 16
28 Kurishita H, Kuwabara T, Hasegawa M. Development of fine-grained V-28Cr-2.3 Y and V-52Cr-1.8Y alloys with superior mechanical properties [J]. Mater. Sci. Eng., 2006, A433: 32
29 Gordy W, Thomas W J O. Electronegativities of the elements [J]. J. Chem. Phys., 1956, 24: 439
30 Carlson O N. The O-Y (oxygen-yttrium) system [J]. Bull. Alloy Phase Diagr., 1990, 11: 61
31 Iwao N, Kainuma T, Suzuki T, et al. Ductility of V-Cr and V-Cr-Zr alloy ingots [J]. J. Less-Common Met., 1981, 79: 19
32 Kim K H, Park H C, Lee J, et al. Vanadium alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement [J]. Scr. Mater., 2013, 68: 905
33 Paglieri S N, Wermer J R, Buxbaum R E, et al. Development of membranes for hydrogen separation: Pd coated V-10Pd [J]. Energy Mater., 2008, 3: 169
34 Alexander D G, Carlson O N. The V-VO phase system [J]. Metall. Trans., 1971, 2: 2805
35 Yu J Q, Yi W Z, Chen B D, et al. Binary Alloy Phase-Diagrams [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1987: 547
35 虞觉奇, 易文质, 陈邦迪 等. 二元合金状态图集 [M]. 上海: 上海科学技术出版社, 1987: 547
36 Zhang P B, Zhao J J, Zou T T, et al. A review of solute-point defect interactions in vanadium and its alloys: First-principles modeling and simulation [J]. Tungsten, 2021, 3: 38
37 Qin J Y, Wang Z M, Wang D H, et al. Dissolution, diffusion, and penetration of H in the group VB metals investigated by first-principles method [J]. Int. J. Hydrogen Energy, 2019, 44: 29083
38 Heo N J, Nagasaka T, Muroga T, et al. Effect of impurity levels on precipitation behavior in the low-activation V-4Cr-4Ti alloys [J]. J. Nucl. Mater., 2002, 307-311: 620
39 Bradford S A. The effect of oxygen on physical and mechanical properties of vanadium [D]. Iowa: Iowa State University, 1961
40 Beale H A, Arsenault R J. The preparation and some mechanical properties of high-purity vanadium [J]. Metall. Trans., 1970, 1: 3355
41 Yang P J, Li Q J, Tsuru T, et al. Mechanism of hardening and damage initiation in oxygen embrittlement of body-centred-cubic niobium [J]. Acta Mater., 2019, 168: 331
42 Dutta A. Compressive deformation of Fe nanopillar at high strain rate: Modalities of dislocation dynamics [J]. Acta Mater., 2017, 125: 219
43 Lee H J, Wirth B D. Molecular dynamics simulation of dislocation-void interactions in BCC Mo [J]. J. Nucl. Mater., 2009, 386-388: 115
44 Zhang X M, Li Y F, He Q L, et al. Investigation of the interstitial oxygen behaviors in vanadium alloy: A first-principles study [J]. Curr. Appl. Phys., 2018, 18: 183
45 Jo M G, Madakashira P P, Suh J Y, et al. Effect of oxygen and nitrogen on microstructure and mechanical properties of vanadium [J]. Mater. Sci. Eng., 2016, A675: 92
46 Diercks D R, Loomis B A. Alloying and impurity effects in vanadium-base alloys [J]. J. Nucl. Mater., 1986, 141-143: 1117
47 Zhang P B, Li X J, Zhao J J, et al. Atomic investigation of alloying Cr, Ti, Y additions in a grain boundary of vanadium [J]. J. Nucl. Mater., 2016, 468: 147
48 Lee S, Yi Y, Bee P. First-principles study of segregation behavior of Cr/Ti/Y at grain boundary in vanadium [J]. Int. J. Mater. Mech. Manuf., 2018, 6: 31
49 Huang F F, Li X Z, Shan X R, et al. Hydrogen transport through the V-Cr-Al alloys: Hydrogen solution, permeation and thermal-stability [J]. Sep. Purif. Technol., 2020, 240: 116654
50 Lu Y L, Gou M M, Bai R M, et al. First-principles study of hydrogen behavior in vanadium-based binary alloy membranes for hydrogen separation [J]. Int. J. Hydrogen Energy, 2017, 42: 22925
51 Griessen R, Riesterer T. Heat of formation models [A]. Hydrogen in Intermetallic Compounds I: Electronic, Thermodynamic, and Crystallographic Properties, Preparation [M]. Berlin: Springer, 1988: 219
[1] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[2] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[4] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[5] 陈懿, 郭明星, 易龙, 袁波, 李高洁, 庄林忠, 张济山. 新型Al-Mg-Si-Cu-Zn合金板材组织、织构和性能的优化调控[J]. 金属学报, 2017, 53(8): 907-917.
[6] 于宣, 张志豪, 谢建新. 不同Ce含量Fe-6.5%Si合金的组织、有序结构和中温拉伸塑性[J]. 金属学报, 2017, 53(8): 927-936.
[7] 张艳,郭明星,邢辉,王斐,汪小锋,张济山,庄林忠. 不同热加工工艺对Al-Mg-Si-Cu合金板材力学性能和组织的影响*[J]. 金属学报, 2015, 51(12): 1425-1434.
[8] 张会 王绍青. Mg-La和Mg-Nd二元合金相稳定性的第一原理研究[J]. 金属学报, 2012, 48(7): 889-894.
[9] 郭建亭; 袁超; 侯介山 . 稀土元素在NiAl合金中的作用[J]. 金属学报, 2008, 44(5): 513-520 .
[10] 孟亮;郑修麟. 杂质及Ce对8090Al-Li合金内、外韧化水平的影响[J]. 金属学报, 1997, 33(8): 802-806.
[11] 杜挺. 稀土元素在金属材料中的一些物理化学作用[J]. 金属学报, 1997, 33(1): 69-77.
[12] 吴亚桥;杨林;赵忠俭;高丽峰;徐永波;吕振家. 纯铁在稀土与氮离子共渗后的表层结构[J]. 金属学报, 1996, 32(7): 705-710.
[13] 吴亚桥;杨林;赵忠俭;高丽峰;徐永波;吕振家. 纯铁离子渗稀土表层结构研究[J]. 金属学报, 1996, 32(6): 594-598.
[14] 马如璋;刘涛;陈菊芳;杨国斌;徐祖雄;顾红霞. 钇对超微晶软磁合金结构和磁性能的影响[J]. 金属学报, 1996, 32(2): 207-210.
[15] 徐颂波;陈俊明. Mg,RE复合微合金化提高Ni_3Al(B)-Cr基合金的室温塑性[J]. 金属学报, 1994, 30(5): 221-224.