Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2024.00322
  本期目录 | 过刊浏览 |
Cu/Ta纳米双层膜拉伸变形及Al、W原子掺杂对其变形影响的分子动力学模拟
石腾龙1,2,陈娟2,赵彬3,史俊勤1
1. 西北工业大学 材料学院 先进润滑与密封材料研究中心  西安 710072
2. 太原科技大学 材料科学与工程学院  太原 030000
3. 西安赛福斯材料防护有限责任公司  西安 710200
Molecular Dynamics Simulations of Tensile Deformation of Cu/Ta Nano-Bilayer Films and the Effect of Al and W Atoms Doping on the Deformation#br#
引用本文:

石腾龙 陈娟 赵彬 史俊勤. Cu/Ta纳米双层膜拉伸变形及Al、W原子掺杂对其变形影响的分子动力学模拟[J]. 金属学报, 10.11900/0412.1961.2024.00322.

全文: PDF(1843 KB)  
摘要: Cu/Ta纳米双层膜常被用于半导体和微电子器件等领域,在复杂服役环境下会发生变形损伤,导致微尺度设备或器件失效,因此有必要研究Cu/Ta纳米双层膜的拉伸变形行为。本工作采用分子动力学模拟方法研究了Cu/Ta纳米双层膜的拉伸性能及变形机制,并且通过在Cu层中掺杂Al或W原子来研究掺杂原子对其变形行为的影响。结果表明:拉伸方向对Cu/Ta纳米双层膜的塑性变形方式有较大影响;在掺杂Al或W原子后,Cu/Ta纳米双层膜的屈服强度增加;掺杂W原子的Cu/Ta纳米双层膜在平行于界面方向拉伸时出现两种取向的堆垛层错,在垂直于界面方向拉伸时Cu层发生fcc→bcc的相变。
关键词 Cu/Ta界面拉伸变形合金强化分子动力学    
Abstract:Nano-multilayers composed of immiscible metals have been widely investigated over the past decades due to their exceptional microstructural stability. The Cu/Ta system, which is also immiscible, is particularly notable because tantalum offers higher melting point, strength, and superior wear and corrosion resistance compared to metals like niobium. Cu/Ta nano-bilayer films are extensively used in the electronics industry for semiconductors, microelectronic devices, optical systems, and magnetic applications. However, the presence of interfaces and the distinct deformation responses of the Cu and Ta layers during processing, fabrication, and service conditions make mechanical deformation and subsequent failure inevitable, potentially compromising the performance of microscale devices. Therefore, understanding the deformation mechanisms and enhancing the mechanical strength of Cu/Ta nano-bilayers at the microscopic scale is essential. In this study, molecular dynamics simulations were employed to investigate the tensile behavior and deformation mechanisms of Cu/Ta nano-bilayers. In addition, the effects of Al and W doping in the Cu layer on the deformation behavior were analyzed. The results indicate that tensile loading direction significantly influences the plastic deformation mode. When the bilayers were stretched parallel to the interface, both Cu and Ta layers exhibited sequential plastic deformation. In contrast, when the loading was applied perpendicular to the interface, only the Cu layer deformed plastically, while the Ta layer remained elastically constrained throughout. Doping with Al or W atoms enhanced the overall hardness and yield strength of the nano-bilayers. Furthermore, W doping induced stacking faults in both loading directions when stretched parallel to the interface, and a martensitic transformation from fcc to bcc structure occurred in the Cu layer under perpendicular tension.
Key wordsCu/Ta interface    Stretching deformation    Alloying strengthening    Molecular dynamics
收稿日期: 2024-09-13     
基金资助:西安市科技计划项目重点产业链技术攻关一般项目
[1] 周婷婷, 赵福祺, 周洪强, 张凤国, 殷建伟. He泡液态金属铝的动态拉伸断裂机制与损伤模型[J]. 金属学报, 2025, 61(4): 643-652.
[2] 柏智文, 丁志刚, 周爱龙, 侯怀宇, 刘伟, 刘峰. α-Fe单晶拉伸变形热-动力学的分子动力学模拟[J]. 金属学报, 2024, 60(6): 848-856.
[3] 孟子凯, 孟智超, 高长源, 郭辉, 陈汉森, 陈刘涛, 徐东生, 杨锐. 不同条件下纳米晶 α-Zr蠕变行为的分子动力学模拟[J]. 金属学报, 2024, 60(5): 699-712.
[4] 刘瑞, 于治, 赵洋, 李晓齐, 喻海龙, 何娟, 聂鹏程, 王春雨, 邰凯平, 刘畅. 柔性、可拉伸变形微型热电器件的设计与集成[J]. 金属学报, 2024, 60(3): 348-356.
[5] 任军强, 邵珊, 王启, 卢学峰, 薛红涛, 汤富领. 含氧纳米多晶 α-Ti拉伸力学性能与变形机制的分子动力学模拟[J]. 金属学报, 2024, 60(2): 220-230.
[6] 刘仕, 黄佳玮, 武静. 机器学习势在铁电材料研究中的应用[J]. 金属学报, 2024, 60(10): 1312-1328.
[7] 陈名毅, 胡俊伟, 余耀辰, 牛海洋. 机器学习分子动力学辅助材料凝固形核研究进展[J]. 金属学报, 2024, 60(10): 1329-1344.
[8] 李志尚, 赵龙, 宗洪祥, 丁向东. 机器学习型分子力场在金属材料相变与变形领域的研究进展[J]. 金属学报, 2024, 60(10): 1388-1404.
[9] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[10] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[11] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[13] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[14] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[15] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.