Please wait a minute...
金属学报  2024, Vol. 60 Issue (3): 348-356    DOI: 10.11900/0412.1961.2022.00171
  研究论文 本期目录 | 过刊浏览 |
柔性、可拉伸变形微型热电器件的设计与集成
刘瑞1,2, 于治2, 赵洋2, 李晓齐2, 喻海龙2, 何娟2, 聂鹏程2, 王春雨2, 邰凯平2,3(), 刘畅2()
1沈阳化工大学 理学院 沈阳 110142
2中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3辽宁冷芯半导体科技有限公司 辽宁省集成电路热管理专业技术创新中心 沈阳 110172
Design and Integration of Flexible and Stretchable Micro-Thermoelectric Devices
LIU Rui1,2, YU Zhi2, ZHAO Yang2, LI Xiaoqi2, YU Hailong2, HE Juan2, NIE Pengcheng2, WANG Chunyu2, TAI Kaiping2,3(), LIU Chang2()
1College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
2Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3Liaoning Professional Technology Innovation Center for Integrated Circuit Thermal Management, Liaoning Lengxin Semiconductor Technology Co. Ltd., Shenyang 110172, China
引用本文:

刘瑞, 于治, 赵洋, 李晓齐, 喻海龙, 何娟, 聂鹏程, 王春雨, 邰凯平, 刘畅. 柔性、可拉伸变形微型热电器件的设计与集成[J]. 金属学报, 2024, 60(3): 348-356.
Rui LIU, Zhi YU, Yang ZHAO, Xiaoqi LI, Hailong YU, Juan HE, Pengcheng NIE, Chunyu WANG, Kaiping TAI, Chang LIU. Design and Integration of Flexible and Stretchable Micro-Thermoelectric Devices[J]. Acta Metall Sin, 2024, 60(3): 348-356.

全文: PDF(2122 KB)   HTML
摘要: 

在能源匮乏、环境污染严重的今天,研发可循环利用、环境友好的新型能源材料与器件具有重要意义。热电材料可直接实现热能与电能的相互转换,为解决这一问题提供了新的途径。特别是,近年来由于柔性热电器件展现出自供电、可穿戴等优势,受到了人们的高度重视。本工作通过引入聚二甲基硅氧烷(polydimethylsiloxane,PDMS)基底,利用单壁碳纳米管(single-wall carbon nanotube,SWCNT)/Bi2Te3热电复合薄膜材料优异的热电性能和柔韧性,设计制作了一种可拉伸变形的三维拱形结构的微型热电发电器件。该器件充分利用薄膜材料面内最佳热电性能方向,通过器件内外温差获得热-电性能转换,在电极两端产生电势差,实现发电。该微型柔性热电器件在温差为4 K时,输出电压为4.8 mV,最大输出功率达2.6 × 10-9 W,功率密度为3.9 × 10-9 W/cm2,器件的最小弯曲半径为3 mm。这种微型柔性热电器件的制备工艺简单易行、成本低廉,为柔性热电薄膜发电器件的研制提供了新途径。

关键词 SWCNT/Bi2Te3热电复合薄膜可拉伸变形微型柔性热电器件    
Abstract

A miniature flexible thermoelectric generator with a stretchable three-dimensional (3D) arch structure is designed using polydimethylsiloxane (PDMS) as a substrate and the excellent thermoelectric properties and flexibility of single-wall carbon nanotube (SWCNT)/Bi2Te3 thermoelectric hybrid film. The device fully utilizes optimal in-plane thermoelectric performance direction of the film material and obtains electro-thermal conversion through temperature differences between the inside and outside of the device plane. Therefore, thermoelectric potential is generated at both ends of the electrode to achieve power generation. When the temperature difference was 4 K, the output voltage is 4.8 mV, the maximum output power is 2.6 × 10-9 W, the power density is 3.9 × 10-9 W/cm2, and the minimum bending radius of the device can reach 3 mm. The fabrication process for this miniature flexible thermoelectric device is simple, feasible, and low-cost, providing a new avenue for developing flexible thermoelectric thin-film power generation devices.

Key wordsSWCNT/Bi2Te3 thermoelectric hybrid film    stretchable and deformable    flexible thermoelectric device
收稿日期: 2022-04-17     
ZTFLH:  TB383.2  
基金资助:国家自然科学基金项目(52073290);国家自然科学基金项目(51927803);辽宁省杰出青年科学基金项目(2023JH6/100500004);辽宁省自然科学基金项目(2022-MS-011);沈阳市科技计划项目(23-407-3-23)
通讯作者: 邰凯平,kptai@imr.ac.cn,主要从事热电材料与器件的研究; 刘 畅,cliu@imr.ac.cn,主要从事碳纳米管的制备、性能与应用探索的研究
Corresponding author: TAI Kaiping, professor, Tel: 18640320728, E-mail: kptai@imr.ac.cn; LIU Chang, professor, Tel: 18640219199, E-mail: cliu@imr.ac.cn
作者简介: 刘 瑞,女,1996年生,硕士
图1  薄膜型热电器件设计图和三维立体拱形热电薄膜器件设计图
图2  微型柔性热电器件制作流程图
图3  可拉伸变形的拱形聚二甲基硅氧烷(PDMS)基底的制作
图4  柔性、可拉伸变形微型热电器件实物图
图5  单壁碳纳米管(SWCNT)/Bi2Te3复合薄膜和SWCNT/Sb1.5Bi0.5Te3复合薄膜的XRD谱
图6  沉积时间为3600 s的SWCNT/Bi2Te3复合薄膜和沉积时间为2100 s的SWCNT/Sb1.5Bi0.5Te3复合薄膜的SEM像
图7  n型SWCNT/Bi2Te3复合薄膜与p型SWCNT/Sb1.5Bi0.5Te3复合薄膜的热电性能
图8  微型柔性热电器件的测试原理图
图9  微型柔性热电器件发电性能
图10  微型柔性热电器件的柔性测试图
1 Zhou Q, Zhu K, Li J, et al. Leaf‐inspired flexible thermoelectric generators with high temperature difference utilization ratio and output power in ambient air [J]. Adv. Sci., 2021, 8: 2004947
doi: 10.1002/advs.v8.12
2 He R, Schierning G, Nielsch K. Thermoelectric devices: A review of devices, architectures, and contact optimization [J]. Adv. Mater. Technol., 2018, 3: 1700256
doi: 10.1002/admt.v3.4
3 Shi X L, Zou J, Chen Z G. Advanced thermoelectric design: From materials and structures to devices [J]. Chem. Rev., 2020, 120: 7399
doi: 10.1021/acs.chemrev.0c00026
4 Tan G J, Zhao L D, Kanatzidis M G. Rationally designing high-performance bulk thermoelectric materials [J]. Chem. Rev., 2016, 116: 12123
pmid: 27580481
5 Li Y, Qiao J X, Zhao Y, et al. A flexible thermoelectric device based on a Bi2Te3-carbon nanotube hybrid [J]. J. Mater. Sci. Technol., 2020, 58: 80
doi: 10.1016/j.jmst.2020.03.066
6 Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator [J]. J. Power Sources, 2008, 175: 909
doi: 10.1016/j.jpowsour.2007.09.096
7 Du Y, Xu J Y, Paul B, et al. Flexible thermoelectric materials and devices [J]. Appl. Mater. Today, 2018, 12: 366
8 Zhao Y. Investigation of CNTs-Bi2Te3 hybrid thermoelectric thin film materials and devices [D]. Hefei: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2021
8 赵 洋. 碳纳米管-碲化铋复合热电薄膜材料与器件的制备和性能研究 [D]. 合肥: 中国科学技术大学(中国科学院金属研究所), 2021
9 Li Y. Investigation on the thermoelectric performance of flexible Bi2Te3/SWCNT hybrids and devices [D]. Hefei: University of Science and Technology of China (Institute of Metal Research, Chinese Academy of Sciences), 2020
9 李 颖. 柔性Bi2Te3/SWCNT复合热电薄膜材料及器件性能研究 [D]. 合肥: 中国科学技术大学(中国科学院金属研究所), 2020
10 Madan D, Wang Z Q, Wright P K, et al. Printed flexible thermoelectric generators for use on low levels of waste heat [J]. Appl. Energy, 2015, 156: 587
doi: 10.1016/j.apenergy.2015.07.066
11 Jo S E, Kim M K, Kim M S, et al. Flexible thermoelectric generator for human body heat energy harvesting [J]. Electron. Lett., 2012, 48: 1015
doi: 10.1049/el.2012.1566
12 Jin Q, Jiang S, Zhao Y, et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold [J]. Nat. Mater., 2019, 18: 62
doi: 10.1038/s41563-018-0217-z
13 Pichanusakorn P, Bandaru P. Nanostructured thermoelectrics [J]. Mater. Sci. Eng., 2010, R67: 19
14 Wang Y L, Zhu W, Deng Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator [J]. Nano Energy, 2020, 73: 104773
doi: 10.1016/j.nanoen.2020.104773
15 Wang Y, Yang L, Shi X L, et al. Flexible thermoelectric materials and generators: Challenges and innovations [J]. Adv. Mater., 2019, 31: 1807916
doi: 10.1002/adma.v31.29
16 Park S H, Jo S, Kwon B, et al. High-performance shape-engineerable thermoelectric painting [J]. Nat. Commun., 2016, 7: 13403
doi: 10.1038/ncomms13403 pmid: 27834369
17 Zhou W W, Zhu J X, Li D, et al. Binary‐phased nanoparticles for enhanced thermoelectric properties [J]. Adv. Mater., 2009, 21: 3196
doi: 10.1002/adma.v21:31
18 Bahk J H, Fang H Y, Yazawa K, et al. Flexible thermoelectric materials and device optimization for wearable energy harvesting [J]. J. Mater. Chem., 2015, 3C: 10362
19 Kim C S, Lee G S, Choi H, et al. Structural design of a flexible thermoelectric power generator for wearable applications [J]. Appl. Energy, 2018, 214: 131
doi: 10.1016/j.apenergy.2018.01.074
20 Zhu P C, Shi C Q, Wang Y L, et al. Recyclable, healable, and stretchable high-power thermoelectric generator [J]. Adv. Energy Mater., 2021, 11: 2100920
doi: 10.1002/aenm.v11.25
21 Zhang L, Shi X L, Yang Y L, et al. Flexible thermoelectric materials and devices: From materials to applications [J]. Mater. Today, 2021, 46: 62
doi: 10.1016/j.mattod.2021.02.016
22 Beretta D, Perego A, Lanzani G, et al. Organic flexible thermoelectric generators: From modeling, a roadmap towards applications [J]. Sustainable Energy Fuels, 2017, 1: 174
doi: 10.1039/C6SE00028B
23 Wang X, Shi Y Q, Ding L M. To enhance the performance of n-type organic thermoelectric materials [J]. J. Semicond., 2022, 43: 020202
24 Zhang Q, Sun Y M, Xu W, et al. Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently [J]. Adv. Mater., 2014, 26: 6829
doi: 10.1002/adma.v26.40
25 Guo Z P, Yu Y D, Zhu W, et al. Kirigami-based stretchable, deformable, ultralight thin-film thermoelectric generator for BodyNET application [J]. Adv. Energy Mater., 2022, 12: 2102993
doi: 10.1002/aenm.v12.5
26 Na J, Kim Y, Park T, et al. Preparation of bismuth telluride films with high thermoelectric power factor [J]. ACS Appl. Mater. Interfaces, 2016, 8: 32392
doi: 10.1021/acsami.6b10188
27 Rojas J P, Conchouso D, Arevalo A, et al. Paper-based origami flexible and foldable thermoelectric nanogenerator [J]. Nano Energy, 2017, 31: 296
doi: 10.1016/j.nanoen.2016.11.012
28 Ryan J D, Lund A, Hofmann A I, et al. All-organic textile thermoelectrics with carbon-nanotube-coated n-type yarns [J]. ACS Appl. Energy Mater., 2018, 1: 2934
doi: 10.1021/acsaem.8b00617 pmid: 29963656
29 Jung M, Jeon S, Bae J. Scalable and facile synthesis of stretchable thermoelectric fabric for wearable self-powered temperature sensors [J]. RSC Adv., 2018, 8: 39992
doi: 10.1039/C8RA06664G
30 Dong X Y, Xiong S X, Luo B W, et al. Flexible and transparent organic-inorganic hybrid thermoelectric modules [J]. ACS Appl. Mater. Interfaces, 2018, 10: 26687
doi: 10.1021/acsami.8b08696
31 Li X, Cai K F, Gao M Y, et al. Recent advances in flexible thermoelectric films and devices [J]. Nano Energy, 2021, 89: 106309
doi: 10.1016/j.nanoen.2021.106309
32 Liu C, Cheng H M. Controlled growth of semiconducting and metallic single-wall carbon nanotubes [J]. J. Am. Chem. Soc., 2016, 138: 6690
doi: 10.1021/jacs.6b00838 pmid: 27149629
33 Ge R, Dong X Y, Sun L L, et al. Meters-long, sewable, wearable conductive polymer wires for thermoelectric applications [J]. J. Mater. Chem., 2020, 8C: 1571
No related articles found!