Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2024.00304
  本期目录 | 过刊浏览 |
钢包静置过程夹杂物去除的工业试验与数值模拟
段豪剑1,谢忠研1,李占魁1,徐学军1,黄财德2,温瀚2,张立峰3

1 北京科技大学 冶金与生态工程学院  北京 100083

2 首钢京唐钢铁联合有限责任公司 炼钢部  唐山 063200

3 北方工业大学 机械与材料工程学院  北京 100144

Industrial Experiment and Numerical Simulation of Inclusion Removal During Ladle Holding Period

DUAN Haojian 1, XIE Zhongyan 1, LI Zhankui 1, XU Xuejun 1, HUANG Caide 2, WEN Han 2, ZHANG Lifeng 3

1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Steelmaking Department, Shougang Jingtang United Iron and Steel Co. Ltd., Tangshan 063200, China

3. School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China

引用本文:

段豪剑 谢忠研 李占魁 徐学军 黄财德 温瀚 张立峰. 钢包静置过程夹杂物去除的工业试验与数值模拟[J]. 金属学报, 10.11900/0412.1961.2024.00304.

全文: PDF(1975 KB)  
摘要: 
在高品质钢的生产过程中,二次精炼的最后阶段通常是钢包静置过程,以促进夹杂物的上浮去除,从而提高钢液的洁净度。首先通过工业试验调研了钢包吹氩密封成分调整(CAS)精炼生产SPHC低碳钢时,钢包静置过程中夹杂物数密度和面积分数的演变。结果表明,随着静置时间的增加,夹杂物逐渐上浮并被去除,其数密度和面积分数分别从静置开始时的52.8 #/mm2和279 × 10-6下降至静置15 min后的22.1 #/mm2和148 × 10-6。随后采用离散相模型建立了钢包静置过程中夹杂物运动和去除的数值模型。计算结果表明,在钢包静置过程中,直径小于10 μm的夹杂物主要跟随钢液流动,钢包静置900和1800 s后的夹杂物去除率分别为51.6%和66.7%;直径为100 μm夹杂物的运动受钢液流动和自身上浮的双重作用,钢包静置900和1800 s后其去除率分别为70.2%和89.2%;直径为1000 μm的夹杂物主要是自身上浮运动,在钢包静置120 s后其去除率已接近100%。
关键词 钢包静置过程夹杂物工业试验数值模拟    
Abstract

In high-quality steel production, the final stage of secondary refining typically involves a ladle holding period to facilitate the flotation and removal of inclusions. This improves the cleanliness of the molten steel. This study investigated the evolution of inclusion number density and area fraction during the ladle holding period by conducting industrial experiments on composition adjustment via the sealed argon bubbling refining process of SPHC low-carbon steel. The results indicated that inclusions would be removed by floating during the ladle holding period. The inclusion number density and area fraction decreased from 52.8 #/mm2 and 279 × 10–6 at the start of the holding period to 22.1 #/mm2 and 148 × 10–6 after 15 min, respectively. To clarify the movement and removal of inclusions, a numerical model was developed based on a discrete phase model, incorporating multiphase flow and heat transfer during the ladle holding period. The calculations revealed the following conclusions: (1) inclusions smaller than 10 μm primarily followed the molten steel’s fluid flow, with removal rates of 51.6% and 66.7% after 900 and 1800 s, respectively; (2) inclusions with a diameter of 100 μm were influenced by the molten steel’s fluid flow and their buoyancy, achieving removal rates of 70.2% and 89.2% after 900 and 1800 s, respectively; (3) inclusions with a diameter of 1000 μm primarily underwent flotation, reaching an approximately 100% removal rate after 120 s. This study quantitatively examined the relationship between inclusion removal rates, particle sizes, and refining time during the ladle holding period, thereby providing theoretical guidance for the industrial production of high-quality steel.

Key wordsLadle holding period    Inclusion    Industrial experiment    Numerical simulation
收稿日期: 2024-09-03     
ZTFLH:  TF764  
基金资助:国家重点研发计划;国家自然科学基金
[1] 邹建新, 张嘉祺, 赵颖燕, 林羲, 丁文江. 高容量镁基储氢合金材料研究与应用进展[J]. 金属学报, 2025, 61(3): 420-436.
[2] 余东, 马威龙, 王亚莉, 王锦程. Au-Pt合金凝固-固态相变微观组织演化相场法模拟[J]. 金属学报, 2025, 61(1): 109-116.
[3] 李俊杰, 李盼悦, 黄立清, 郭杰, 吴京洋, 樊凯, 王锦程. 真空自耗电弧熔炼铸锭凝固行为多尺度模拟研究进展[J]. 金属学报, 2025, 61(1): 12-28.
[4] 孟泽, 李光强, 李腾飞, 郑庆, 曾斌, 刘昱. Ce75Cr1钢洁净度、组织与耐点蚀性能的影响[J]. 金属学报, 2024, 60(9): 1229-1238.
[5] 王霖, 魏晨, 王雷, 王军, 李金山. Cu-Co系难混溶合金核壳结构演化过程模拟[J]. 金属学报, 2024, 60(9): 1239-1249.
[6] 任松, 吴家柱, 张屹, 张大斌, 曹阳, 尹存宏. 激光束空域形态对激光定向能量沉积316L不锈钢热输运影响的数值模拟[J]. 金属学报, 2024, 60(12): 1678-1690.
[7] 郭杰, 黄立清, 吴京洋, 李俊杰, 王锦程, 樊凯. 钛合金三次真空自耗电弧熔炼过程中的宏观偏析传递行为[J]. 金属学报, 2024, 60(11): 1531-1544.
[8] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[9] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[10] 张开元, 董文超, 赵栋, 李世键, 陆善平. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[12] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[13] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[14] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[15] 孙阳庭, 李一唯, 吴文博, 蒋益明, 李劲. CaMg掺杂下夹杂物对C70S6非调质钢点蚀行为的影响[J]. 金属学报, 2022, 58(7): 895-904.