Effect of Ultrasonic Power on the Microstructure and Shear Strength of W90/Sn/Mg Joint " /> <strong>超声功率对W90/Sn/Mg接头微观组织和力学性能的影响</strong>
Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2024.00158
  本期目录 | 过刊浏览 |
超声功率对W90/Sn/Mg接头微观组织和力学性能的影响

张旭东1,2  付 伟1,2  宋晓国1,2  宋 娜3  孙 浩2  胡胜鹏1,2

  1. 1. 哈尔滨工业大学 材料科学与工程学院  哈尔滨 150001 
  2. 2. 哈尔滨工业大学(威海) 材料科学与工程学院  威海 264209 
  3. 3. 中国航发西安动力控制科技有限公司  西安 710000

Effect of Ultrasonic Power on the Microstructure and Shear Strength of W90/Sn/Mg Joint

ZHANG Xudong 1,2, FU Wei 1,2, SONG Xiaoguo 1,2, SONG Na 3, SUN Hao 2, HU Shengpeng 1,2

  1. 1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 
  2. 2. School of Materials Science and Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China 
  3. 3. Aero-China Xi’an Power Control Technology Co. Ltd., Xi’an 710000, China
引用本文:

张旭东 付 伟 宋晓国 宋 娜 孙 浩 胡胜鹏. 超声功率对W90/Sn/Mg接头微观组织和力学性能的影响[J]. 金属学报, 10.11900/0412.1961.2024.00158.

全文: PDF(2044 KB)  
摘要: 
为了实现W90钨合金与AZ31B镁合金的低温钎焊,采用纯Sn作为钎料,通过SEM及EDS对不同超声功率下钎焊接头的界面微观组织进行了表征和分析,并对钎焊接头的抗剪强度进行了测试,探究了超声功率对接头界面组织及力学性能的影响。结果表明,W90/Sn界面结合良好,焊缝中包含基体相β-Sn和Mg2Sn化合物,Mg/Sn界面生成一层Mg2Sn化合物。随超声功率增加,焊缝宽度减小,Mg2Sn层厚度增加,接头抗剪强度先增大后减小。当超声功率为100和150 W时,接头的抗剪强度达到最大值10.5 MPa。模拟了超声辅助钎焊过程液态Sn的声压分布,1个超声周期内,液态Sn的声压幅值经过负值-正值-负值-正值-负值的周期性变化。通过理论计算,阐明了空化泡崩溃时产生的高温、高压、微射流和冲击波等空化效应。随超声功率增加,液态Sn的声压幅值增加,产生的空化效应更剧烈。
关键词 钨合金镁合金超声辅助钎焊空化效应    
Abstract

Tungsten alloy, known for its high hardness, thermal stability, and excellent nuclear radiation shielding performance, is a critical material for radiation shielding applications. It is widely used in aerospace, national defense, and medical fields. However, tungsten alloy has drawbacks such as high density and processing difficulty, which limit its applicability in high-efficiency, miniaturized, and lightweight designs, particularly in nuclear medical treatment and nuclear-powered flight devices. A double-layered W/Mg structure is expected to serve as a next-generation nuclear radiation shielding material. Due to the significant differences in melting temperatures and coefficients of thermal expansion between W and Mg, conventional soldering methods are ineffective for joining them. In this study, a W90 tungsten heavy alloy and AZ31B magnesium alloy were successfully bonded using an ultrasonic-assisted soldering method with pure Sn. The bonding temperature was 250 °C, and the ultrasonic duration was 4 s. The interfacial microstructure of the W90/Sn/Mg joint under varying ultrasonic power levels was analyzed using scanning electron microscopy and energy dispersive spectroscopy. Additionally, the shear strength of the joint was tested to assess the impact of ultrasonic power on interfacial bonding and mechanical performance. The results indicated that effective bonding formed at the W90/Sn interface, with Ni3Sn4 compounds appearing between the (Ni, Fe) matrix and Sn. The seam consisted of a β-Sn matrix phase and Mg2Sn compounds, with an Mg2Sn layer forming on Mg/Sn interface. As ultrasonic power increased, joint width decreased while the Mg2Sn layer thickness increased. The shear strength of the joint initially increased with ultrasonic power but later decreased. At ultrasonic power levels of 100 and 150 W, the joint strength reached a maximum of 10.5 MPa, with failure occurring at the W90/Sn interface. When ultrasonic power increased to 200 W, joint strength declined, and fracture occurred at the Mg2Sn layer. The acoustic pressure distribution of liquid Sn during the ultrasonic-assisted soldering process was simulated. During a single ultrasonic cycle, the acoustic pressure of liquid Sn oscillated periodically from negative to positive and back to negative values. The maximum acoustic pressure was observed at the center of the liquid Sn, gradually decreasing toward the edges. The cavitation effect, driven by collapsing bubbles, generated high temperatures, high pressures, micro-jets, and shock waves, as explained through theoretical calculations. Based on the Keller–Miksis equation, as ultrasonic power increased, the ratio of the cavitation bubble radius to its initial radius (R(t)/R0) increased from 16.3 to 47.7, with collapse velocities ranging from 3262 to 6985 m/s. According to the Noltingk–Neppiras theory, as acoustic pressure increased, cavitation-induced temperatures rose from 14614 to 24989 K, while pressure increased from 1.08 × 105 MPa to 9.45 × 105 MPa. The generated temperature and pressure were sufficient to break the Mg alloy’s oxide film and promote interfacial reactions.

Key wordsTungsten heavy alloy    Mg alloy    Ultrasonic-assisted soldering    Sn    Cavitation effect
收稿日期: 2024-05-13     
基金资助:国家自然科学基金项目;国家自然科学基金项目;山东省自然科学基金项目
[1] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[2] 王升, 朱彦丞, 潘虎成, 李景仁, 曾志浩, 秦高梧. Yb含量对Mg-Gd-Y-Zn-Zr合金微观组织与力学性能的影响[J]. 金属学报, 2025, 61(3): 499-508.
[3] 付辉, 孙勇, 邹国栋, 张帆, 杨许生, 张涛, 彭秋明. 高性能超高压镁合金研究进展[J]. 金属学报, 2025, 61(3): 475-487.
[4] 王慧远, 孟昭元, 贾海龙, 徐新宇, 花珍铭. 新型低合金含量烘烤硬化镁合金研究进展及展望[J]. 金属学报, 2025, 61(3): 372-382.
[5] 曾小勤, 于铭迪, 王静雅. 镁合金的多系滑移与塑性调控[J]. 金属学报, 2025, 61(3): 361-371.
[6] 蒋斌, 张昂, 宋江凤, 黎田, 游国强, 郑江, 潘复生. 镁合金一体化压铸缺陷控制[J]. 金属学报, 2025, 61(3): 383-396.
[7] 黄科, 李新志, 方学伟, 卢秉恒. 镁合金电弧熔丝增材制造技术研究现状与展望[J]. 金属学报, 2025, 61(3): 397-419.
[8] 王彬杉, 徐光, 任睿, 张强, 单召辉, 樊建锋. 脉冲电流对AZ91镁合金温挤压过程中动态析出和微观组织的影响[J]. 金属学报, 2025, 61(1): 129-142.
[9] 朱桂杰, 王思清, 查敏, 李眉娟, 孙凯, 陈东风. 稀土元素Ce对挤压态Mg-0.3Al-0.2Ca-0.5Mn合金板材体织构及力学各向异性的影响[J]. 金属学报, 2024, 60(8): 1079-1090.
[10] 汪丽佳, 胡励, 苗天虎, 周涛, 何曲波, 刘相果. 预变形对双峰分离非基面织构AZ31镁合金板材室温力学行为及微观组织演变的影响[J]. 金属学报, 2024, 60(7): 881-889.
[11] 徐洋, 柯黎明, 聂浩, 夏春, 刘强, 陈书锦. 局部强冷作用下厚板铝合金/镁合金搅拌摩擦焊界面金属间化合物的析出行为[J]. 金属学报, 2024, 60(6): 777-788.
[12] 刘勇, 曾刚, 刘洪, 王煜, 李建龙. Zr镁合金晶粒细化机理与研究进展[J]. 金属学报, 2024, 60(2): 129-142.
[13] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[14] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[15] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.