激光熔覆Si增强MoNiCr合金涂层及其高温摩擦学性能
High-Temperature Tribological Performance of Laser Clad MoNiCr Alloy Coatings Reinforced by Si
通讯作者: 崔功军,cuigongjun@tyut.edu.cn,主要从事机械摩擦学及表面技术研究
责任编辑: 梁烨
收稿日期: 2023-11-28 修回日期: 2024-01-25
基金资助: |
|
Corresponding authors: CUI Gongjun, professor, Tel:
Received: 2023-11-28 Revised: 2024-01-25
Fund supported: |
|
作者简介 About authors
尤世泉,男,1999年生,硕士
为改善钼基涂层作为热端部件高温防护涂层的耐磨损性能,采用激光熔覆技术在Inconel 718合金表面原位制备了MoNiCrSi涂层,并系统研究了Si对钼合金涂层的微观组织和高温摩擦学性能的影响。在室温至1000 ℃的大气环境中,采用Si3N4作为摩擦对偶及球-盘式高温摩擦磨损试验机对涂层及基底材料的高温摩擦学性能进行测试。结果表明,Si与Mo、Ni、Cr发生反应生成了α-Mo、Mo0.3Ni0.24Si0.76、Mo5Si3和CrSi2相。MoNiCrSi涂层的Vickers硬度相比MoNiCr涂层和基底材料显著升高,Si元素表现出明显的固溶强化和弥散强化作用。随温度的升高,涂层的摩擦系数逐渐减小,磨损率呈现出先降低后增加的趋势。MoNiCrSi涂层相比MoNiCr涂层和基底材料表现出更优异的高温耐磨损性能,Si明显改善了涂层的高温耐磨自润滑性能。这主要归因于涂层高的硬度和SiO2、MoO3、Mo4O11、NiMoO4等固体润滑相以及高温润滑层的协同作用。特别是在600 ℃下,MoNiCrSi合金涂层的磨损率降低至5.57 × 10-6 mm3/(N·m),比MoNiCr涂层低了1个数量级。在不同温度下,钼合金涂层表现出了不同的磨损机理。
关键词:
With increasing power of aero-engines, the effects of temperature and load on hot-end parts such as bearings and bushings are becoming more apparent, leading to the wear failure of hot-end parts. Therefore, increasing the wear resistance of hot-end parts is very important. Laser-clad coatings can considerably improve the mechanical properties and wear resistance of these parts, without altering the properties of the substrate. The use of such coatings provides a new approach to improve the high-temperature wear resistance of hot-end parts. Mo alloys with high melting point, excellent high-temperature strength, and low thermal expansion coefficient have been widely used as high-temperature materials. Therefore, these coatings fabricated using the laser cladding technology have good prospects for application as wear-resistant coatings on the surface of hot-end parts at elevated temperatures. To further enhance the wear resistance of the Mo alloy coatings for application as high-temperature protective coatings for hot-end parts, MoNiCrSi coatings were in situ prepared on the surface of the Inconel 718 alloy via laser cladding. The effects of Si on the microstructure and high-temperature tribological performance of the Mo alloy coatings were systematically studied. The high-temperature wear tests of the Mo alloy coatings and Inconel 718 alloy were performed using a ball-on-disk tribo-tester against Si3N4 balls in an environment where the temperature varied from room temperature to 1000 oC. The results indicate that Si reacts with Mo, Ni, and Cr to form α-Mo, Mo0.3Ni0.24Si0.76, Mo5Si3, and CrSi2 phases. Compared with the MoNiCr coating and substrate, the MoNiCrSi coating has higher microhardness. The introduction of Si causes solid solution strengthening and dispersion strengthening effects. The friction coefficients of coatings gradually decrease with increasing temperature. The wear rates firstly decrease and then increase with increasing temperature. Furthermore, with an increase in the temperature, the substrate material exhibits the highest wear rates, reaching a maximum value of 3.41 × 10-4 mm3/(N·m) at room temperature (24 oC). However, the high-temperature wear resistance of the MoNiCrSi coating is the best than that of the MoNiCr coating or substrate, and the wear rates of the MoNiCrSi coating are in the order of magnitude of 10-6-10-5 mm3/(N·m) in the temperature range from room temperature to 1000 oC. This finding indicates that the introduction of Si drastically improves the high-temperature wear resistance and self-lubricating properties of the Mo alloy coating at elevated temperatures. This improvement is primarily attributed to the synergistic effects of the high hardness of the coatings and introduction of solid lubricants, such as SiO2, MoO3, Mo4O11, and NiMoO4, as well as an oxide lubricating layer on wear tracks. In particular, at 600 oC, the MoNiCrSi alloy coating has the lowest wear rate of 5.57 × 10-6 mm3/(N·m), which is one order of magnitude lower than that of the MoNiCr coating. The Mo alloy coatings exhibit various wear mechanisms at different temperatures. At room temperature, the main wear mechanisms are fatigue wear, abrasive wear and plastic deformation. At 600 oC, the oxidation wear, fatigue wear, and abrasive wear become the primary wear mechanisms. At 1000 oC, the dominant wear mechanism of the coatings is oxidative wear.
Keywords:
本文引用格式
尤世泉, 崔功军, 杨荣乾, 刘宇嵩, 冯小刚, 寇子明.
YOU Shiquan, CUI Gongjun, YANG Rongqian, LIU Yusong, FENG Xiaogang, KOU Ziming.
随着航空发动机性能的不断提升,其轴承、轴套等热端部件承受的温度、载荷逐渐升高,极易引起磨损,从而影响装备的安全运行[1],因此热端零部件的表面防护和耐磨损性能变得至关重要。通过表面强化技术可以在保持基体材料不变的情况下,大幅改善零部件表面的力学性能和耐磨性[2]。钼基合金具有高熔点、出色的高温强度、低的热膨胀系数等优点,已被广泛用作高温零部件材料[3]。因此利用钼基合金作为防护涂层以提高热端零部件表面高温耐磨损性能将更具优势。目前,国内外学者[4~9]利用各种表面处理技术已成功研制出各类钼基合金涂层。然而大多数研究主要集中在纯Mo涂层的摩擦学性能[4,5]以及中/低温下钼基涂层的耐磨性[7,8]。钼基涂层多通过超音速火焰(HVOF)喷涂或者等离子喷涂技术制备,而所得涂层的孔隙率超过5%,导致其耐磨损性能不足[10]。相较于热喷涂、火焰喷涂等表面技术,采用激光熔覆技术制备的涂层具有组织结构致密、涂基结合强度高、选材不受限制等优点,被广泛应用于航空航天、汽车工业等领域[11]。因此,利用激光熔覆技术将钼合金作为防护涂层材料熔覆在热端零部件表面以提高其高温耐磨损性能将具有广阔的应用前景。
研究[12~14]表明,添加非金属元素可以进一步改善钼基涂层的高温摩擦学性能。采用磁控溅射技术制备的MoN薄膜在高温下能够形成具有自润滑效果的钼氧化物,在宽温域内表现出良好的润滑性能[13]。Cui等[14]研究了C增强的MoNiCr合金涂层的高温耐磨性。结果表明,C的加入明显提高了涂层的硬度;硬质碳化物的强化作用以及NiCrO3、MoO3等固体润滑剂组成的氧化物润滑层大幅改善了涂层的高温耐磨性。Si作为非金属元素,也被应用于改善钼基涂层的力学性能和摩擦学性能上。Ding等[15]研究发现,由于Mo5SiB2和Mo3Si硬质相的生成,Mo-Si-B合金涂层的最高Vickers硬度达到了900 HV0.5。Xu等[16]研究了Si增强的MoS2/Si涂层的摩擦学性能,发现Si的加入提高了涂层的硬度和吸氧效应,改善了涂层的摩擦学性能。此外,Si不仅可以提高合金的高温抗氧化性,还可以与金属元素发生反应生成具有高熔点、优良抗蠕变性的硬质金属硅化物,进一步改善涂层的力学性能和耐磨性[17,18]。因此,通过添加非金属元素Si来提高钼基合金涂层的摩擦学性能是一种可行的方法。然而,目前多数研究[19,20]都集中在提高钼基合金涂层的高温抗氧化性能方面,针对Si对钼基合金涂层的摩擦学性能特别是其高温摩擦学性能的研究鲜见报道。
为了进一步改善钼基合金涂层的高温耐磨损性能,本工作选用MoNiCr合金作为涂层基体成分,选用Si作为合金元素强化涂层的高温耐磨损性能。采用激光熔覆技术在Inconel 718合金表面制备出了MoNiCrSi高温耐磨涂层。以Si3N4球为对偶,在室温至1000 ℃范围内采用球-盘式高温摩擦磨损试验机测试涂层的高温摩擦学性能。作为对比,同时测试了Inconel 718合金的高温摩擦学性能。通过对涂层微观组织及磨损表面形貌的分析,系统研究了Si对涂层高温摩擦学性能的作用。
1 实验方法
实验采用纯Mo (纯度(质量分数):99%;平均粒径:74 μm)、Ni (纯度:99.3%;平均粒径:48~100 μm)、Cr (纯度:99.6%;平均粒径:48~100 μm)、Si (纯度:99%;平均粒径:48~100 μm)球形粉末为原料。利用“V”型混料机按照表1所示的MoNiCr和MoNiCrSi涂层成分比例将相应粉末混合2 h,随后采用恒温干燥箱将混合粉末在100 ℃下烘干15 min备用。选用尺寸为30 mm × 30 mm × 5 mm的Inconel 718合金作为涂层基底,其成分(质量分数,%)为:Mn 0.15,Ti 1.00,Mo 3.01,Nb 5.22,Fe 18.58,Cr 18.79,Ni余量。在激光熔覆前,将基底熔覆表面抛光至粗糙度Ra = 1.2 μm,并用丙酮进行超声清洗。采用同步送粉方式,利用最大功率为2 kW的ZKZM-RF-2000型二氧化碳激光熔覆系统将MoNiCr和MoNiCrSi混合粉末分别熔覆于Inconel 718合金基底上。激光熔覆的工艺参数如下:激光功率1330 W,扫描速率1430 mm/min,送粉速率9 g/min,光斑直径2 mm,搭接率55%,保护气体(Ar)流速7 L/min。
表1 钼合金涂层的化学组成 (mass fraction / %)
Table 1
Coating | Mo | Ni | Cr | Si |
---|---|---|---|---|
MoNiCr | 68.0 | 25 | 7 | 0 |
MoNiCrSi | 66.1 | 25 | 7 | 1.9 |
利用HT-1000型球-盘式高温摩擦磨损试验机测试涂层的高温摩擦学性能。测试温度为室温(24 ℃)及200、400、600、800和1000 ℃;实验载荷为10 N,滑动速率为0.25 m/s。试样磨斑直径为10 mm,实验持续时间为20 min。采用Si3N4陶瓷球作为摩擦对偶(直径6 mm、硬度1631 HV)。实验前,利用80、600和1500号SiC砂纸,将所有涂层测试面逐级打磨抛光至Ra = 0.1 μm,并用丙酮进行超声清洗。试样实时摩擦系数由高温摩擦磨损试验机配套的传感器测量并通过连接的计算机记录。采用Links-2007型表面轮廓仪测量涂层的磨损体积(V),并计算出磨损率W = V / (FL) (其中,F为载荷,L为滑动距离)。每个试样在不同温度下进行3次重复测试,取平均值作为试样的摩擦系数和磨损率。
采用HVS-1000Z型Vickers硬度计(载荷为500 g,停留时间为10 s)测量涂层纵切面的Vickers硬度分布。每个试样测量10次,取平均值作为涂层横截面的Vickers硬度。采用配备能谱仪(EDS)的IT-300型扫描电镜(SEM)分析涂层的微观组织、磨损形貌及元素组成。采用DIFFRACTOMETER-6000型X射线衍射仪(XRD,CuKα,40 kV,30 mA)检测涂层和磨损表面的相组成,扫描范围为20°~100°。
2 实验结果与分析
2.1 涂层的组织和相组成
图1为MoNiCr和MoNiCrSi涂层的XRD谱。由图可知,MoNiCr涂层主要由α-Mo、Cr1.12Ni2.88和Cr9Mo21Ni20相组成,这是由于在高能激光的作用下,混合金属粉末在熔覆过程中形成高温熔池,Mo、Ni、Cr元素发生反应生成Cr1.12Ni2.88和Cr9Mo21Ni20金属间化合物。随着Si的加入,涂层的衍射峰发生变化,并有Mo0.3Ni0.24Si0.76、Mo5Si3和CrSi2新相生成,这表明Si在高温熔池中与金属元素发生合金化反应。由Mo-Ni-Si相图和可能发生的化学反应[21,22]可知,部分Si与Mo、Ni发生反应生成Mo0.3Ni0.24Si0.76和Mo5Si3金属硅化物。Si和Cr原子具有良好的相容性,能够形成稳定的键合,有助于具有低能量的CrSi2生成。α-Mo有助于改善钼合金涂层的室温断裂韧性[23]。新生成的Mo0.3Ni0.24Si0.76、Mo5Si3和CrSi2硬质金属硅化物有助于改善涂层的硬度和耐磨性。
图1
图2为MoNiCr和MoNiCrSi涂层横截面的SEM像。由图可知,MoNiCr涂层的厚度约为1.4 mm (图2a),MoNiCrSi涂层的厚度约为1.5 mm (图2b)。涂层的结构致密,没有明显的孔隙和裂纹。涂层与基底为冶金结合,表现出良好的界面结构。图3为MoNiCr和MoNiCrSi涂层横截面不同位置的背散射电子(BSE)像。从图中可以看出,2种合金涂层在沿垂直基底方向上表现出了相似的微观组织,即在靠近界面区域为典型的柱状晶(图3a和c),而在靠近涂层表面过渡区为等轴晶(图3b和d)。这主要是由温度梯度(G)与凝固速率(R)的比值决定[24,25]。涂层沿着热流梯度的方向冷却,导致靠近界面区域的枝晶凝固方向近似垂直分布[26]。由于涂层表面区域具有极大的凝固速率和较低的温度梯度,使得树枝晶结构紊乱生长。激光熔覆导致的较高的冷却速率,使得保护气体无法及时逸出,导致涂层内部出现了细小的气孔[14]。此外,通过对合金涂层不同区域的EDS分析(表2)可知,涂层中白色枝晶结构主要为富Mo区,而灰色区域主要为富Cr、Ni区,硅化物则较为均匀地分布在枝晶结构和灰色区域中。结合XRD结果(图1)可知,白色枝晶结构主要为α-Mo及其化合物,灰色相主要为Cr1.12Ni2.88相,金属硅化物则较为均匀地分散在涂层中。
图2
图2
MoNiCr和MoNiCrSi涂层横截面的SEM像
Fig.2
Cross-sectional SEM images of MoNiCr (a) and MoNiCrSi (b) coatings
图3
图3
MoNiCr和MoNiCrSi涂层横截面不同位置的背散射电子(BSE)像
Fig.3
Cross-sectional backscattered electron (BSE) images of MoNiCr (a, b) and MoNiCrSi (c, d) coatings at different areas
(a, c) close to the interface (b, d) close to the surface
表2 图3中标记区域的EDS结果 (mass fraction / %)
Table 2
Region | C | Si | Cr | Ni | Mo |
---|---|---|---|---|---|
A | 2.76 | 0 | 13.54 | 39.81 | 43.89 |
B | 1.75 | 0 | 9.21 | 23.81 | 65.23 |
C | 2.56 | 1.28 | 12.53 | 40.21 | 43.42 |
D | 1.60 | 1.29 | 9.55 | 24.36 | 63.20 |
图4为MoNiCr和MoNiCrSi涂层沿横截面方向的Vickers硬度分布。从图中可以看出,涂层的高Vickers硬度分布与涂层厚度相一致。MoNiCr和MoNiCrSi涂层的平均硬度分别为(610 ± 25)和(670 ± 25) HV,分别约为基底硬度的2.4和2.6倍。随着Si的加入,涂层的硬度得到明显提高,一方面由于Si固溶到Mo中起到明显的固溶强化作用,一定程度上提高了涂层的硬度[27];另一方面,硬质金属硅化物Mo0.3Ni0.24Si0.76、Mo5Si3和CrSi2的生成及分散分布可以阻碍涂层内部位错移动,导致涂层硬度提高,表现出弥散强化的效果。MoNiCrSi涂层较高的硬度将有利于提高其在宽温域下的耐磨性。
图4
图4
MoNiCr和MoNiCrSi涂层截面的Vickers硬度分布
Fig.4
Distributions of the cross-sectional Vickers hardnesses of MoNiCr and MoNiCrSi coatings
2.2 高温摩擦磨损性能
在载荷为10 N、滑动速率为0.25 m/s的条件下,Inconel 718合金基底及MoNiCr和MoNiCrSi涂层在不同温度下的实时摩擦系数与摩擦系数曲线如图5和6所示。可见,随着温度的上升,基底和涂层的摩擦系数大体呈下降趋势,并在高温下保持较低水平。如图5a所示,在室温下,基底经较短的磨合期,随后摩擦系数逐渐稳定在0.66左右;随着温度的升高,摩擦系数逐渐降低,并在800 ℃时,达到最低值0.33。如图5b所示,在室温下MoNiCr涂层也经过短暂的磨合期,随后摩擦系数逐渐稳定在0.60左右,但在滑动实验过程中出现了轻微的波动。在200 ℃时,摩擦系数略微下降,但仍表现出波动倾向,这主要与Mo的低温脆性有关。在滑动过程中,表面脆性相易发生剥落,而剥落时的局部卸载导致了摩擦系数发生明显的跳动[28]。随着温度的升高,摩擦系数逐渐降低。当温度大于600 ℃时,摩擦系数达到相对稳定的状态,为0.36。如图5c所示,随着Si元素的加入,在室温下涂层经较短的磨合期后,摩擦系数上升至0.70左右,明显高于MoNiCr涂层。此外,摩擦系数发生明显的波动,这主要与硬质硅化物的脱落并刮擦摩擦副表面有关。随着温度的升高,摩擦系数逐渐降低,并趋于稳定。在1000 ℃时,MoNiCrSi涂层的摩擦系数降至最低,稳定在0.34左右。
图5
图5
载荷为10 N、滑动速率为0.25 m/s条件下Inconel 718合金基底与MoNiCr和MoNiCrSi涂层在不同温度下的实时摩擦系数曲线
Fig.5
Real-time friction coefficient curves of Inconel 718 alloy substrate (a) and MoNiCr (b) and MoNiCrSi (c) coatings with different temper-atures at load of 10 N and sliding rate of 0.25 m/s (RT—room temperature)
图6
图6
载荷为10 N、滑动速率为0.25 m/s条件下Inconel 718合金基底与MoNiCr和MoNiCrSi涂层的温度-摩擦系数曲线
Fig.6
Temperature-friction coefficient curves of Inconel 718 alloy substrate and MoNiCr and MoNiCrSi coatings at load of 10 N and sliding rate of 0.25 m/s
在载荷为10 N、滑动速率为0.25 m/s的条件下,Inconel 718合金基底及MoNiCr和MoNiCrSi涂层在不同温度下的磨损率如图7所示。总体而言,基底与涂层的磨损率随着温度的升高呈现出先降低后升高的趋势。Inconel 718基底表现出了最高的磨损率,而MoNiCrSi涂层磨损率最低。基底的磨损率最大可达3.41 × 10-4 mm3/(N·m);而涂层的磨损率均保持在10-5 mm3/(N·m)数量级。随着温度的升高,基底的磨损率变化幅度较大,而涂层的磨损率则相对稳定,变化幅度较小。在室温至1000 ℃范围内,涂层相比于基底表现出优异的耐磨损性能。特别地,MoNiCrSi涂层表现出更优异的耐磨损性能,600 ℃时涂层的磨损率降低至5.57 × 10-6 mm3/(N·m),比MoNiCr涂层低了1个数量级,表明Si的添加显著改善了涂层在宽温域内的耐磨损性能。图8对应给出了基底与涂层在不同温度下的磨损表面轮廓。由图可知,基底与涂层的磨损表面深度和宽度随温度的变化而变化,与磨损率的变化趋势相符。此外,MoNiCrSi涂层的磨损表面轮廓均小于基底和MoNiCr涂层,与其磨损率相一致。
图7
图7
载荷为10 N、滑动速率为0.25 m/s条件下,Inconel 718合金基底及MoNiCr和MoNiCrSi涂层在不同温度条件下的磨损率
Fig.7
Wear rates of Inconel 718 alloy substrate and MoNiCr and MoNiCrSi coatings with different temperatures at load of 10 N and sliding rate of 0.25 m/s
图8
图8
载荷为10 N、滑动速率为0.25 m/s条件下Inconel 718合金基底与MoNiCr和MoNiCrSi涂层在不同温度下的磨损表面轮廓
Fig.8
Profiles of worn surfaces of Inconel 718 alloy substrate (a) and MoNiCr (b) and MoNiCrSi (c) coatings with temperature at load of 10 N and sliding rate of 0.25 m/s
Si发生固溶反应生成了高硬度的金属硅化物并表现出明显的强化作用,使得涂层具有更高的硬度。较高的硬度有助于提高涂层的抗变形能力,可有效限制磨损的产生[29],改善了涂层的耐磨损性能。此外,分散分布于涂层基体的硬质硅化物能起到支撑外部负载的作用,从而进一步提高涂层的耐磨性。因此,在宽温域(室温至1000 ℃)内,高硬度的涂层表现出低的磨损率。外部温度是影响涂层高温摩擦学性能的另一个重要因素[30]。一方面,在摩擦实验过程中,涂层会发生一定程度的氧化。但在中/低温下,较弱的氧化反应、磨损作用以及Si的吸氧作用[31],降低了涂层的氧化程度,使得涂层表面较难形成致密连续的氧化物润滑层。因此,在中/低温下涂层的耐磨性很大程度上受到其表面性能的影响。具有更高硬度的涂层表现出更好的耐磨性。摩擦副间的直接接触产生了较大的应力,使得涂层在室温下表现出最高的摩擦系数[32]。随着温度的升高,涂层会发生一定程度的软化[14],磨损表面剪切应力减小。因此摩擦系数随着温度的逐渐升高而降低。另一方面,随着温度的继续升高,涂层表面的磨屑和表面材料的氧化而生成SiO2和MoO3、Mo4O11、NiMoO4、NiCr2O4固体润滑剂(图9),这些氧化物经摩擦对偶的机械压实及高温烧结,在磨损表面逐渐形成了一层氧化物润滑层。同时氧化物润滑层中的SiO2还可以提高其致密性,使得氧化物润滑层更致密、完整[33]。氧化物润滑层的存在减小了摩擦副间的直接接触面积,起到了显著的减摩抗磨作用[34],使得摩擦系数显著降低。然而,由于MoO3在高温(> 700 ℃)下会通过氧化膜颗粒间隙蒸发[35],涂层在超过700 ℃时会发生质量损失,导致磨损率增加。综上所述,在宽温域内,MoNiCrSi涂层比MoNiCr涂层表现出更好的耐磨损性能。
图9
图9
MoNiCr和MoNiCrSi涂层在1000 ℃时磨损表面的XRD谱
Fig.9
XRD spectra of worn surfaces of MoNiCr and MoNiCrSi coatings at 1000 oC
2.3 磨损形貌分析
图10为室温条件下基底与涂层磨损表面的SEM像。由图10a可见,基底的磨损表面出现大面积剥落区域与严重的塑性变形,这是典型的疲劳磨损特征[36]。此外,在磨损表面观察到了明显的分层现象,出现了大量的磨屑和犁沟,表现出明显的磨粒磨损特征,与其表现出的高磨损率相一致,大量磨屑在摩擦过程中刮擦摩擦副,提高了摩擦系数。这表明了基底的磨损机理为疲劳磨损、黏着磨损和磨粒磨损。在室温下MoNiCr涂层的磨损表面存在明显的剥落区域(图10b),这主要与Mo及其金属化合物在低温下表现出的固有脆性有关。在摩擦过程中,涂层因相对运动发生脆性剥落,从而使磨损率增加。同时,剥落的材料在交替载荷作用下变成“补丁”附着在磨损表面。在摩擦过程中,磨屑会刮擦涂层,形成一些可见的犁沟,表现出典型的三体磨损特征[25]。而MoNiCrSi涂层由于硬质硅化物的生成及其分散分布于涂层中,提高了涂层的硬度和抗塑性变形的能力,其磨损表面相对平整,剥落材料和磨损碎片相对较少,出现了细微的划痕(图10c),磨损率低。但由于剥落下来的磨损碎片硬度相对较高,刮擦了涂层表面,提高了其摩擦系数。综上所述,涂层在室温下的主要磨损机理为疲劳磨损、磨粒磨损和塑性变形。
图10
图10
室温下Inconel 718合金基底及MoNiCr和MoNiCrSi涂层磨损表面的SEM像
Fig.10
SEM images of worn surfaces of Inconel 718 alloy substrate (a) and MoNiCr (b) and MoNiCrSi (c) coatings at room temperature
图11为在600 ℃时基底与涂层磨损表面的SEM像。从图中可以看出,随着温度的上升,基底磨损表面形成了少量且不连续的氧化物润滑层,但磨损表面仍然存在大量的剥落和分层现象(图11a),其磨损机理为疲劳磨损、磨粒磨损和轻微的氧化磨损。MoNiCr涂层的磨损表面存在不完整的氧化物润滑层,磨损表面的剥落倾向也相应减弱(图11b)。这种现象主要归因于涂层在高温下发生一定程度的软化,导致涂层的脆性降低,韧性升高,降低了疲劳磨损的发生[14]。然而,在600 ℃时尚未生成充足的氧化物,磨损表面无法形成完整的氧化物润滑层。因此,在600 ℃时MoNiCr涂层的磨损率仅略微下降。MoNiCrSi涂层的磨损表面较为光滑,同时呈现出犁沟和轻微塑性变形的形貌特征(图11c)。造成这种现象的原因主要是由于涂层具有更高的硬度,可足以承载氧化物润滑层。此外,磨损表面形成SiO2,其在高温下具有黏性[37],可以在磨损过程中流动填封涂层的表面缺陷,提高润滑层的自愈合性能,使得磨损表面的氧化物润滑层更为完整。氧化物润滑层的存在大幅降低了摩擦系数,提高了涂层的耐磨性[34]。综上所述,涂层在600 ℃下的主要磨损机理为氧化磨损、疲劳磨损和磨粒磨损。
图11
图11
600 ℃时Inconel 718合金基底及MoNiCr和MoNiCrSi涂层磨损表面的SEM像
Fig.11
SEM images of worn surfaces of Inconel 718 alloy substrate (a) and MoNiCr (b) and MoNiCrSi (c) coatings at 600 oC
图12为基底与涂层在1000 ℃下磨损表面的SEM像。由图可知,在1000 ℃时,高温氧化加快,可生成足量的氧化物,基底和涂层磨损表面均形成了更加明显的氧化物润滑层。氧化物润滑层的存在,有效地防止了涂层与Si3N4陶瓷球的直接接触,大幅降低了涂层的摩擦系数[38]。然而,基底磨损表面的氧化物润滑层发生破裂,出现大量裂纹,剥落下来的氧化物润滑层在磨损过程中形成氧化碎屑,导致摩擦系数和磨损率增大,基底的磨损机理为氧化磨损和磨粒磨损(图12a)。此外,MoNiCr涂层由于硬度较低,在摩擦过程中,无法有效地支撑氧化物润滑层,导致磨损表面的润滑层出现大量裂纹而剥落(图12b)。裂纹的产生加速了MoO3的挥发,导致MoNiCr涂层在1000 ℃下的耐磨性变差。MoNiCrSi涂层的磨损表面则较为光滑,未见明显的孔隙和裂纹(图12c)。基于图9的XRD谱分析,氧化物润滑层有SiO2的存在,SiO2不仅提高了氧化物润滑层的钝化和致密性,而且由其形成的氧化物润滑层具有较低的O渗透率[39],可有效阻止外界氧的入侵,防止内部Mo及其金属化合物的进一步氧化,抑制了MoO3的形成和挥发,有效减少了涂层的质量损失,从而降低了磨损率。综上所述,在1000 ℃下,2种涂层的主要磨损机理为氧化磨损。
图12
图12
1000 ℃时Inconel 718合金基底及MoNiCr和MoNiCrSi涂层磨损表面的SEM像
Fig.12
SEM images of worn surfaces of Inconel 718 alloy substrate (a) and MoNiCr (b) and MoNiCrSi (c) coatings at 1000 oC
3 结论
(1) 采用激光熔覆技术制备了Si元素强化的MoNiCr基高温耐磨涂层。Si表现出了明显的固溶强化和弥散强化作用,MoNiCrSi涂层的Vickers硬度相比MoNiCr涂层和基底显著升高;涂层物相包括α-Mo、Cr1.12Ni2.88、Cr9Mo21Ni20、Mo0.3Ni0.24Si0.76、Mo5Si3和CrSi2。
(2) 在室温至1000 ℃范围内,涂层的摩擦系数随着温度的升高逐渐减小,而磨损率呈现出先降低后增加的趋势。随着Si的加入,涂层的高温耐磨损性能得到改善,在高温下摩擦系数快速下降,并在1000 ℃时稳定在0.34。此外,在宽温域内,MoNiCrSi涂层的磨损率均低于基底和MoNiCr涂层,表现出更优异的耐磨性能。特别是在600 ℃下,磨损率降低至5.57 × 10-6 mm3/(N·m)。造成这种现象有2个主要原因:一方面,硬质硅化物相的存在及其分散分布于涂层中,提高了涂层的硬度和抗塑性变形的能力;另一方面,由于高温摩擦化学反应,涂层磨损表面形成了由SiO2和MoO3、Mo4O11、NiMoO4、NiCr2O4等固体润滑相组成的更致密的氧化物润滑层,明显改善了涂层在宽温域内的耐磨损性能。
(3) 在室温下,MoNiCrSi涂层的主要磨损机理为疲劳磨损、磨粒磨损和塑性变形。在600 ℃时,主要磨损机理为氧化磨损、疲劳磨损和磨粒磨损;在1000 ℃时,主要磨损机理为氧化磨损。
参考文献
Advances in the regulation and interfacial behavior of coatings/superalloys
[J].With the continuous increase of turbine inlet temperature of advanced aero-engine, the protective coating technology plays a vital role in improving the oxidation and corrosion resistance of turbine blade materials to ensure the safe performance of turbine blades. However, an intrinsic physical and chemical property mismatch exists between protective coating and superalloy. Interfacial reaction leads to the degradation of interfacial microstructure and mechanical properties. It is the key factor to restrict the application of coating. In this paper, the evolution and diffusion behavior of typical coating/superalloy interface microstructure and its influencing factors are summarized. The influence of interfacial behavior on microstructural stability and mechanical properties of superalloys with coatings is also discussed. The control methods of coating/alloy interface are introduced from three aspects, including the optimization of microstructure composition, design of interfacial diffusion-resistant layer, and development of a new type of interfacial stabilizing coating. Furthermore, the key characteristics of the compatibility of the coating/superalloy interface are summarized, which will promote systematic studies on the effect of the interface on the coating/alloy properties, the combination of multiple methods to control the interface, and the computer-aided coating design.
涂层/高温合金界面行为及调控研究进展
[J].防护涂层技术对于提高涡轮叶片材料抗氧化腐蚀性能、保证涡轮叶片安全服役具有至关重要的作用,然而,防护涂层与高温合金间有本征的物理、化学性能不匹配性,其界面反应会导致界面组织退化,合金与涂层性能下降,成为制约涂层应用的关键因素。本文概述了典型涂层/高温合金界面组织演变与扩散行为及其影响因素,讨论了界面行为对含涂层高温合金组织稳定性和力学性能的影响,从涂层组织成分优化、界面阻扩散层设计和新型界面稳定涂层研发3个方面介绍了涂层/合金界面的调控方法。总结了涂层/高温合金界面相容性的关键特征,并提出未来应在界面对涂层/合金性能的影响规律与机制、调控界面的多手段联用、计算辅助涂层设计等方面开展系统性研究。
Oxide cleaning effect of in-flight CuNi droplet during atmospheric plasma spraying by B addition
[J].A large amount of air is drawn into the high-temperature plasma jet during the atmospheric plasma spraying (APS) process because it operates in an atmospheric environment, thus oxidizing metal-spray particles. The oxide inclusion resulting from in-flight droplet oxidation inhibits the metallurgical bonding between lamellae in the coating, which limits the applications of plasma-sprayed metal coatings. In this study, a novel approach to create oxide-free molten droplets is proposed by adding B to the CuNi powder to achieve sacrificial oxidation of B in the high-temperature droplet and protect the alloy elements from oxidation. Two powders of CuNi2B and CuNi4B were prepared to deposit the coatings via APS. The effect of B content and spray distance on the microstructure, as well as the O content of CuNi coating, was studied using methods such as SEM, EDS, XRD, and inductively coupled plasma-optical emission spectrum (ICP-CES). The results show that the droplet can be heated to more than 1900oC, and the introduction of B in the powder can inhibit the oxidation of alloy elements in the high-temperature droplet during flight, thus reducing the oxygen in the CuNi coating. Moreover, the deoxidizing effect is affected by the B content of the droplet. Using 4%B CuNi alloy powder and increasing spray distance, the oxide in the coating is reduced. The oxygen in the coating is introduced via oxidation after droplet deposition, and the oxygen content of the coating prepared using the optimized spraying process is reduced to 0.43%, which is considerably lower than 3.5% of CuNiIn coating. An increase in the spray distance and a reduction in B content of CuNi powder, which contains 1.83%B, to 0.5% is insufficient to inhibit the oxidation of the alloying elements of the in-flight particles. The result yields a critical B content of approximately 0.5% for high-temperature droplet oxidation protection. The increase in the B content decreases the melting point, as well as the oxidation of the alloy, thus enhancing the metallurgical bonding between CuNi particles and improving the compactness of the coating. In addition, with the increase in the B content of the coating through the powder composition design and process parameters control from 0.26% to 3.61%, the microhardness of CuNi coating increases from 151 HV0.2 to 457 HV0.2.
B清除大气等离子喷涂CuNi熔滴氧化物效应
[J].提出了粉末中添加B的成分设计,实现通过B牺牲氧化而保护合金元素不氧化从而发展高温CuNi熔滴自清洁氧化物效应。采用CuNi2B与CuNi4B 2种粉末,通过大气等离子喷涂工艺制备涂层,通过SEM、EDS、XRD和ICP-OES等方法研究了B含量与喷涂距离对CuNi涂层组织结构与性能的影响。结果表明,熔滴可加热至1900℃以上,粉末中B的引入可抑制飞行中高温熔滴中的合金元素的氧化,从而显著降低CuNi涂层中的O含量,而该效果受熔滴中B含量影响显著。采用4%B的CuNi合金粉末时,随着喷涂距离的增加,涂层中的氧化物显著降低,涂层中的O主要由熔滴沉积后的氧化引入,优化喷涂工艺制备的涂层O含量降低至0.43%,显著低于CuNiIn涂层的3.5%。当CuNi粉末含B为1.83%时,在距离超过100 mm,B含量降至0.5%以下时,不足以抑制等离子喷涂过程中飞行颗粒的合金元素氧化,故实现高温熔滴氧化保护的临界B含量约为0.5%。研究发现,B添加可引起合金熔点降低效应与去氧化物净化效应,从而显著增强了CuNi粒子间的冶金结合,提高了涂层的致密性;涂层B含量随粉末成分与工艺参数从0.26%增加至3.61%,而CuNi涂层硬度则随B含量增加从151 HV<sub>0.2</sub>线性增加至457 HV<sub>0.2</sub>。
Effect of laser process parameters on the microstructure and properties of TiC reinforced Co-based alloy laser cladding layer
[J].The severe wear and uneven wear will happen on the surface of ductile cast iron such as the traction wheel of elevator, in the long-term working under the serious wear and impact conditions. Laser cladding can be applied to reinforce its surface, which can improve the properties and life of the cladded components, save materials and manufacturing cost and raise the economic efficiency, but as to the surface of different materials, especially the ductile cast iron, the alloy powder and process parameters for laser cladding need to be chosen carefully by the experimental studies because of the rapid melting and solidification, the difference of thermo-physical properties between the laser cladding layer and the matrix, the laser absorption of the cladding layer and matrix and so on. In this work, laser cladding is employed to fabricate Co-based composite coatings reinforced by TiC particles by a 6 kW CO2 laser. The effects of the technical parameters of laser on the composition, phase and microhardness of the laser cladding layer are investigated by OM, SEM, EDS, XRD and microhardness tester, with the emphases of analyzing the changes of the distribution, morphology and size of TiC in the laser cladding layer. It is shown by the results that the cladding layer is mainly composed of γ-Co, TiC/(Ti, W)C1-x, Cr-Ni-Fe-C and a small amount of Cr7C3 phase, and its microstructure changed from the fine dendrite crystal near the cast iron matrix to the equiaxed dendrite in the middle then to the fine dendrite crystal near the surface of laser cladding layer with the dispersed distribution of TiC at the root or tip of secondary dendrite arm, even at the branch of primary dendrite arm. The number of dendrite and the dendrite arm spacing both increase in the microstructure of the laser cladding layer and the morphology of TiC is transformed from the smooth circular shape to the irregular polygon shape, and its content obviously increases with the particle size of TiC decreasing and its distribution more uniform, when the laser power is decreased from 3.6 kW to 3.2 kW or the scanning rate increased from 350 mm/min to 410 mm/min. The growth of the primary dendrite or secondary dendrite can be inhibited by the precipitation of TiC after its dissolution in the melt pool of laser cladding. In this experiment, the hardness at the surface of laser cladding layer gradually increases with the decrease of laser power or the increase of scanning rate, in which the maximal microhardness is 1246.6 HV0.2, up to increasing by 5 times of the matrix.
激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响
[J].采用6 kW CO<sub>2</sub>激光制备了含10%的TiC-钴基合金熔覆层,通过OM、SEM、EDS、XRD及显微硬度计,研究激光工艺参数对熔覆层显微组织、成分、物相及硬度变化的影响规律。结果表明,熔覆层主要由γ-Co、TiC/(Ti, W)C<sub>1-</sub><sub>x</sub>、Cr-Ni-Fe-C和少量的 Cr<sub>7</sub>C<sub>3</sub>相组成,从基体表面到熔覆层表层,组织由细树枝晶→等轴枝晶→细树枝晶,TiC弥散分布于二次枝晶臂根部、顶端或一次枝晶臂上。随激光功率降低或扫描速率增加,熔覆层枝晶含量增加,枝晶间距呈现增大趋势,TiC含量显著增加,尺寸变小,分布更均匀,而TiC形貌从边缘平滑的近圆形向不规则多边形转变,TiC溶解再析出会抑制一次枝晶或二次枝晶生长。实验范围内,随激光功率降低或扫描速率增加,熔覆层表层硬度增加,最高硬度为1246.6 HV<sub>0.2</sub>,相对基体提升接近5倍。
Study on microstructure and wear properties of molybdenum coating fabricated using plasma transferred arc process
[J].
等离子弧喷焊Mo涂层微观组织结构及摩擦磨损性能研究
[J].
Investigations on the abrasive wear behaviour of molybdenum coating on SS304 and A36 using HVOF technique
[J].
Preparation process and mechanical properties of laser cladding gradient molybdenum coating on copper alloy
[J].
Properties of MoWCu alloy coating prepared by supersonic plasma spraying
[J].
超音速等离子喷涂MoWCu合金涂层的性能
[J].
Tribological properties of combined molybdenum coatings formed by electric-spark alloying on stainless steel
[J].
Effect of laser energy density on microstructure, wear resistance, and fracture toughness of laser cladded Mo2FeB2 coating
[J].
High-performance molybdenum coating by wire-HVOF thermal spray process
[J].
Microstructure and mechanical properties of TiB2 reinforced TiAl-based alloy coatings prepared by laser melting deposition
[J].
激光熔化沉积TiB2增强TiAl基合金涂层的组织及力学性能
[J].
Tribological properties of Mo2N films at elevated temperature
[J].
Microstructure and tribological performance of adaptive MoN-Ag nanocomposite coatings with various Ag contents
[J].
Microstructure and high temperature wear behavior of in-situ synthesized carbides reinforced Mo-based coating by laser cladding
[J].
Microstructure and properties of Mo-Si-B-Y2O3 composite coating on nickel-based alloy by laser cladding
[J].
The effect of Si content on the structure and tribological performance of MoS2/Si coatings
[J].
The influence of silicon on the strength and fracture toughness of molybdenum
[J].
Effect of Si content on microstructure and tribological properties of Ti5Si3/TiC reinforced NiTi laser cladding coatings
[J].
Graded PVD Mo-Si interlayer between Si coating and Mo-Si-B alloys: Investigation of oxidation behaviour
[J].
Interface reactions of magnetron sputtered Si-based dual layer coating systems as oxidation protection for Mo-Si-Ti alloys
[J].
Microstructure and oxidation resistance of Si-MoSi2 ceramic coating on TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy at 1500 oC
[J].
Microstructure and wear behaviour of laser-cladded γ-Niss/Mo2Ni3Si coating
[J].
Microstructural and hardness investigation of a multiphase Mo-Si-B alloy processed by laser surface remelting
[J].
Influence of MoSi2 on the microstructure and elevated-temperature wear properties of Inconel 718 coating fabricated by laser cladding
[J].
Effect of molybdenum on the microstructure and high-temperature tribological properties of laser clad CoCrW coating
[J].
Effect of in-situ Ni interlayer on the microstructure and corrosion resistance of underwater wet 316L stainless steel laser cladding layer
[J].
The influence of silicon content on the microstructure and hardness of Mo-Si alloys
[J].
Si含量对Mo-Si合金显微组织和硬度的影响
[J].
Microstructure and frictional wear behavior of FeCrNiMo alloy layer fabricated by laser cladding
[J].To satisfy the requirement for martensite stainless steel layers with high efficiency, an optimized FeNiCrMo alloy layer was prepared using the laser cladding technique. The microstructure and frictional wear behavior of the cladding layer (a single layer with a thickness exceeding 2 mm) were investigated. The results confirmed a homogeneous thickness and crack-free character of the cladding layer. In the microstructure, equiaxed, dendritic and cellular grains were distributed along the thickness direction, and martensite and Cr/Mo-rich ferrite were observed in the dendritic and inter-dendritic regions, respectively. The frictional coefficient and wear volume of the cladding layer increased under increasing applied loads in a block-on-ring wear test, and the wear mechanism was dominated by abrasive and oxidative wear types. Under higher loads, adhesive wear prevailed. In a ball-on-disc wear test, increasing the temperature decreased the frictional coefficient and increased the wear volume. Oxidative and fatigue wear dominated the wear mechanism under this condition.
FeCrNiMo激光熔覆层组织与摩擦磨损行为
[J].为满足马氏体不锈钢熔覆层的高效制备需求,在合金成分优化基础上,采用激光熔覆技术制备了单层厚度超过2 mm的FeCrNiMo合金熔覆层,并对其微观组织结构与摩擦磨损行为进行了研究。结果表明,熔覆层厚度均匀,无明显裂纹等缺陷,组织从表面沿厚度方向依次为等轴晶、树枝晶、胞状晶,枝晶内为马氏体,晶间为富Cr、Mo元素的铁素体。在环-块摩擦磨损形式下,随着施加载荷加大,摩擦系数和磨损量逐渐增加;熔覆层以磨粒磨损和氧化磨损机制为主,但在高载荷下黏着磨损倾向增大。在球盘往复摩擦磨损形式下,随温度升高,摩擦系数下降,熔覆层发生热软化,磨损量增加;熔覆层以氧化磨损和疲劳磨损机制为主。
A study on the wear and corrosion resistance of high-entropy alloy treated with laser shock peening and PVD coating
[J].
Microstructure and high-temperature frictional wear property of Mo-based composites reinforced by aluminum and lanthanum oxides
[J].
Synthesis of a novel MoSS + Mo5SiB2 + Mo5Si3 based Mo-Si-B alloy and its enhanced fracture toughness
[J].
Investigation of high temperature tribological performance of TiZrV0.5Nb0.5 refractory high-entropy alloy optimized by Si microalloying
[J].
High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings
[J].
Oxidation behavior of Ni-Mo-Si alloy coatings fabricated on carbon steel by laser cladding
[J].
Wear and friction behavior of NiCrBSi coatings at elevated temperatures
[J].
Analysis on the oxidation behavior of Mo5Si3-MoSi2/SiC multi-coating at high temperature
[J].
Mo5Si3-MoSi2/SiC复合涂层的高温抗氧化行为分析
[J].
Synergetic effects of surface texturing and solid lubricants to tailor friction and wear—A review
[J].
Preparation and high temperature oxidation resistance of laser deposited Ti5Si3/MoSi2/Mo5Si3 reinforced α-Ti/NiTi composite coatings
[J].
/
〈 |
|
〉 |
