金属学报, 2025, 61(6): 887-899 DOI: 10.11900/0412.1961.2023.00346

研究论文

稀土Y掺杂V-Cr合金增塑机理及透氢性能

杨波1, 陈小亮1, 史晓斌1, 任伟2,3, 高恒3, 宋广生,1

1 安徽工业大学 材料科学与工程学院 先进金属材料绿色制备教育部重点实验室 马鞍山 243032

2 上海大学 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444

3 上海大学 理学院 物理系 国际量子与分子结构中心 上海 200444

Softening Mechanism and Hydrogen Permeability of Rare Earth Y-Doped V-Cr Alloys

YANG Bo1, CHEN Xiaoliang1, SHI Xiaobin1, REN Wei2,3, GAO Heng3, SONG Guangsheng,1

1 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China

2 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China

3 International Center for Quantum and Molecular Structures, Physics Department, College of Sciences, Shanghai University, Shanghai 200444, China

通讯作者: 宋广生,song_ahut@163.com,主要从事氢分离薄膜材料技术、高性能轻金属(Li、Mg、Al)材料研究

责任编辑: 梁烨

收稿日期: 2023-08-17   修回日期: 2024-04-25  

基金资助: 国家自然科学基金项目(51875002)
省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室开放课题项目(SKLASS 2022-13)
上海市科学技术委员会项目(19DZ2270200)
先进金属材料绿色制备与表面技术教育部重点实验室开发课题项目(GFST2022KF08)

Corresponding authors: SONG Guangsheng, professor, Tel: 13329182538, E-mail:song_ahut@163.com

Received: 2023-08-17   Revised: 2024-04-25  

Fund supported: National Natural Science Foundation of China(51875002)
Open Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy(SKLASS 2022-13)
Science and Technology Commission of Shanghai Municipality(19DZ2270200)
Open Project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials(GFST2022KF08)

作者简介 About authors

杨 波,男,1997年生,博士

摘要

氢分离V100 - x Cr x (x = 8、10,原子分数,%,下同)合金冷轧时易开裂,难以室温加工成形,而稀土Y的掺杂有助于提高冷轧塑变能力,促进高通量氢分离钒合金膜的规模化低廉制备。在优良冷轧成形性能的基础上,研究透氢效率和抗氢脆使用寿命对开发新型高质量非钯合金膜具有重要理论意义和应用价值。本工作利用氧氮氢分析仪、XRD、SEM、TEM、EPMA、冷轧机、硬度计、拉伸机、氢渗透装置研究了Y对铸态氢分离V100 - x - y Cr x Y y合金(x = 8,y = 1;x = 10,y = 0、1、3)微观组织、冷轧成形性能、透氢性能和抗氢脆性能的影响,探究了V100 - x Cr x 合金脆化成因和V-Cr-Y合金增塑机理,并分析了V-Cr和V-Cr-Y合金膜组织形成和抗氢脆性能优劣的原因。结果表明,V-Cr合金为单相等轴晶组织,而Y的掺杂导致形成枝晶状固溶体与枝晶间细小颗粒的复合组织。二元V-Cr合金中Y的掺杂显著降低了合金的硬度,且大幅度提高了合金的冷轧成形性能。在3种含Y合金中,V91Cr8Y1合金的硬度(108.88 HV)最低,最大冷轧压下率(94.5%)最高。虽然V-Cr-Y合金的氢渗透率较无Y的低,但仍是商业化Pd77Ag23合金的2.5~3.0倍,且其抗氢脆性能远优于V-Cr合金,可缓冷至室温而不破裂。稀土Y作为俘获剂与体系中O和S作用形成第二相颗粒,产生净化除杂效应使基体软化,降低塑变成膜的阻力,从而成功制备出成形性能和抗氢脆性能优异的V-Cr-Y合金膜。

关键词: 稀土元素; 成形性能; 增塑机理; 透氢性能; 抗氢脆性能

Abstract

V100 - x Cr x (x = 8 or 10, atomic fraction, %) hydrogen-separation alloys undergo cracks during cold rolling and are difficult to be shaped via room temperature processing. However, the addition of rare-earth element Y can greatly improve their cold-rolling plastic deformation ability, facilitating the low-cost fabrication of V-based alloy membranes for hydrogen separation with high flux on a large scale. In order to achieve both high hydrogen-permeation efficiency and service life, insight into the hydrogen permeability and hydrogen-embrittlement resistance is required on the basis of excellent cold-rolling formability. In this work, the effects of Y addition on the microstructure, cold-rolling formability, hydrogen permeability, and hydrogen-embrittlement resistance of as-cast V100 - x - y Cr x Y y (x = 8, y = 1; x = 10, y = 0, 1, 3) hydrogen-separation alloys were studied using an oxygen-nitrogen-hydrogen analyzer, a cold-rolling machine, a hardness tester, a tension machine, and a hydrogen-permeation device as well as via XRD, SEM, TEM, and EPMA. In addition, the causes of the embrittlement of the V100 - x Cr x alloys and plasticization mechanism of V-Cr-Y alloys were explained. The microstructure formation and hydrogen-embrittlement resistance of V-Cr and V-Cr-Y alloys were also analyzed. Results showed that V-Cr alloys show a single-phase equiaxed grain microstructure, while V-Cr-Y alloys show a composite microstructure comprising a dendritic solid solution and secondary-phase particles located in the inter-dendritic region. The addition of Y in binary V-Cr alloys remarkably reduces the hardness, thereby greatly improving cold-rolling formability. Among the V91Cr8Y1, V89Cr10Y1, and V87Cr10Y3 alloys, V91Cr8Y1 showed the lowest hardness (108.88 HV) and highest maximum cold-rolling reduction rate (94.5%). Although the hydrogen permeability of the V-Cr-Y alloys was lower than those of Y-free alloys, it was still 2.5-3.0 times higher than those of commercial Pd77Ag23 alloys. Moreover, the V-Cr-Y alloys showed much better hydrogen-embrittlement resistance than those of V-Cr alloys and could be slowly cooled to room temperature without rupture. Rare-earth metal Y as a scavenger could react with O and S to form secondary-phase particles, exerting a purification effect, which softened the matrix and reduced the resistance of alloys to plastic deformation. Thus, high-performance V-Cr-Y alloy membranes with an excellent combination of formability and hydrogen-embrittlement resistance were prepared.

Keywords: rare earth element; formability; softening mechanism; hydrogen permeability; hydrogen embrittlement-resistant property

PDF (5604KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨波, 陈小亮, 史晓斌, 任伟, 高恒, 宋广生. 稀土Y掺杂V-Cr合金增塑机理及透氢性能[J]. 金属学报, 2025, 61(6): 887-899 DOI:10.11900/0412.1961.2023.00346

YANG Bo, CHEN Xiaoliang, SHI Xiaobin, REN Wei, GAO Heng, SONG Guangsheng. Softening Mechanism and Hydrogen Permeability of Rare Earth Y-Doped V-Cr Alloys[J]. Acta Metallurgica Sinica, 2025, 61(6): 887-899 DOI:10.11900/0412.1961.2023.00346

目前,我国处于从化石能源为主体向新能源为主体转型的历史过渡阶段,力争实现碳达峰碳中和目标[1],这一目标的提出直接推动了氢能产业的发展。氢能产业主要包含制氢、氢分离、储存、运输等环节。其中,制氢方式主要有化石燃料重整制氢、工业副产氢、电解水制氢和其他制氢方式(太阳能光解水制氢、生物质制氢等),这些制氢方式得到的H2纯度不高,难以满足燃料电池、半导体所需要的H2纯度(≥ 99.999%),需要对H2进一步提纯分离[2~4]。其中,金属膜氢分离法是高纯H2 (≥ 99.999%)获取的一种有效方式,其操作简单、生产成本低、氢纯化程度高。

至今,钯合金膜是唯一商业化的金属膜。金属Pd的价格昂贵、渗透率低限制了其广泛应用,这促进了价格更加低廉、渗透率更高的氢分离钒合金膜的研究与开发[5]。然而,相比于Pd,V的氢化物生成焓更负,H溶解度更高,在氢渗透过程中钒合金膜由H引起的内应力更大,更易脆裂失效[6,7]。降低膜中氢溶解是提高其抗氢脆性能的有效手段。目前研究[8~11]表明,钒合金膜中Co、Fe、Ni、Cr、Al、W、Mo等元素的固溶可以降低H浓度,优化抗氢脆性能。并且,当400 ℃、膜上氢压Pu = 1 MPa时,钒合金中H浓度(C)大小关系为CV-5CoCV-5Fe < CV-5NiCV-5Cr < CV-5Al < CV-5W < CV-5Mo,这意味着除Ni、Fe和Co元素外,Cr降低氢溶解的能力最强,提高膜抗氢脆性能效果最显著。再者,与Ni、Fe和Co相比,Cr可与V无限固溶,发挥高固溶含量元素的斥氢作用,提高膜的抗氢脆性能。因此,V-Cr合金具有很大的研究价值。

Dolan等[9]对氢分离V90Cr10合金膜进行400 ℃、Pu = 0.1~1.0 MPa下的氢渗透实验,当Pu < 1 MPa时,合金膜中H浓度低于韧-脆转变H浓度(20%,原子分数)[8]而未发生开裂,表明V90Cr10合金膜抗氢脆性能较好,但V90Cr10合金由于成形性能差而只能热轧成膜[12]。为进一步提高V-Cr合金膜的抗氢脆性能,需要更高含量Cr的固溶来降低H浓度以达到优化其抗氢脆性能的目的,但其冷轧成形性能也会进一步恶化。

优异的成形性能有利于铸态钒合金室温冷轧成膜,避免热轧导致钒合金膜表面显著氧化和降低能耗,易实现规模化、低成本、大尺寸超薄平面膜制备。大量研究[12~17]表明,冷轧态合金薄膜的氢渗透率较差,但结合后续再结晶退火可使轧态氢渗透率恢复到铸态水平,结合超薄尺寸效应促进高通量合金膜的获得,从而提高H2提纯效率[12~17]。因此,钒合金冷轧成形性能的研究至关重要。现有研究结果[18~20]表明,微量O元素的存在会使V及其合金显著脆化。另一方面,徐立群等[21]对核反应堆氚增殖包层材料V-4Cr-4Ti-0.2Y (质量分数,%)合金进行能谱(EDS)分析,发现富Y相中O含量远大于V-4Cr-4Ti-0.2Y基体,这表明Y可消耗基体中大量游离态的O。受此启发,向高Cr的钒合金中掺杂脱氧剂Y可能有助于V-Cr合金基体净化,从而实现既满足抗氢脆性能的要求同时又获得冷轧成形性能优良的氢分离V-Cr-Y合金。因此,本工作研究了Y掺杂对V-Cr-Y合金微观组织与冷轧成形性能的影响,并对其影响机理进行深入分析。此外,对合金膜进行了氢渗透和抗氢脆性能测试,分析了Y掺杂对钒合金膜氢渗透性能和抗氢脆性能的影响规律,以期为开发冷轧成形性能和抗氢脆性能均优的高通量氢分离V-Cr-Y合金膜提供理论基础。

1 实验方法

1.1 样品制备

使用名义纯度分别为99.9 %、99.95%和99.9% (质量分数)的V、Cr、Y金属按原子百分比配置V92Cr8、V91Cr8Y1、V90Cr10、V89Cr10Y1、V87Cr10Y3合金。将配置好的合金原料置于非自耗电弧熔炼炉中的铜坩埚内对其进行10次翻转熔炼,制备出成分均匀的合金铸锭。采用线切割技术从5种合金铸锭中分别取出尺寸为18 mm (长) × 18 mm (宽) × 2 mm (高)的方块块状试样和16 mm (直径) × 1 mm (厚)的圆片试样。此外,从V90Cr10和V87Cr10Y3合金铸锭中切取拉伸试样(图1)。切割获取的试样用砂纸和SiO2抛光液对其表面进行打磨和抛光,用于组织分析、Vickers硬度测试和冷轧实验,圆片试样用于氢渗透实验,拉伸试样用于室温拉伸实验。线切割剩余的材料用于合金成分分析。

图1

图1   室温拉伸试样尺寸示意图

Fig.1   Schematic of tensile specimen size at room temperature (unit: mm)


1.2 硬度测试、冷轧和拉伸实验

使用HBRVS-187.5硬度计测量每种合金试样整体Vickers硬度,载荷490.5 N,保荷时间15 s,每种试样测量8次并求平均值,作为合金最终Vickers硬度,以此作为间接判断合金成形性能优劣的指标。Vickers硬度越小,其成形性能越好。同时,采用Nano Indenter G200纳米压痕仪在连续刚度模式下测量上述V-Cr和V-Cr-Y基体的硬度,每种合金试样测8个硬度值并求平均值,以观察Y掺杂后基体硬度的变化。

使用四辊冷轧机对每种合金的方块试样进行冷轧,内侧两轧辊辊径120 mm,轧制速率0.1 m/s,道次压下量控制在0.05~0.15 mm。冷轧过程中试样发生明显开裂则停止冷轧,否则继续轧制,直至内侧两轧辊之间的距离无法减小,停止实验,记录各试样最大冷轧压下率,以此作为直接判断各合金成形性能好坏的指标。最大冷轧压下率(r)越大,其成形性能越好。最大冷轧压下率可表示为:

r=(t0-t) / t0

式中,t0t分别为合金试样冷轧前、后的厚度。r反映了板材在成形过程中体现的极限抗塑性破裂能力。

使用带有夹头的LD23.104 微力学测量装置对V90Cr10和V87Cr10Y3试样进行单向室温拉伸实验,加载速率为0.5 mm/min。根据合金试样断口形貌和伸长率进一步分析合金的成形性能。

1.3 氢渗透和抗氢脆实验

将两面经打磨、抛光后厚度介于0.65~0.75 mm之间的圆片置于高真空磁控溅射设备中,在正、反两面镀上约200 nm厚的Pd层,以防止钒合金膜氧化并催化H2解离、H原子重组,随后使用本课题组设计的氢渗透装置(图2)进行400 ℃条件下的氢渗透和抗氢脆性能测试。在正式实验之前,使用0.2 MPa的H2压力对膜片进行活化处理,活化后对管路上端设定0.2~0.8 MPa的H2压力,下端压力为0.1 MPa的大气压,待压力和流量稳定时通过质量流量计记录H2流量。氢渗透实验结束后,继续进行抗氢脆实验,将膜上、下端H2压差控制在0.7 MPa,以2.5 ℃/min的冷却速率从400 ℃开始降温,分析温度与H2流量之间的关系。当H2流量突然增加时,说明膜片开裂,随后停止实验,最后绘制温度与H2通量的缓冷曲线。

图2

图2   氢渗透装置示意图

Fig.2   Schematic of hydrogen permeation device (MFC—mass flow controller)


1.4 组织分析

由于O杂质可显著硬化、脆化钒合金,使用HORIBA EMGA-930氧氮氢分析仪对原材料及熔配过程中引入的O含量进行测试分析。采用Miniflex X射线衍射仪(XRD)对各合金试样进行物相分析,采用CuKα 射线,步长0.02°,扫描速率5°/min,衍射角2θ = 20°~90°。采用Axio Vert.A1光学显微镜(OM)观察试样的金相组织。使用MIRA 3 XMU扫描电子显微镜(SEM)观察试样的组织形貌,并对断口进行组织形貌分析。随后采用JXA-8530F电子探针(EPMA)对抛光及Ar+清洗后的V87Cr10Y3合金进行成分分析。同时,结合聚焦离子束(FIB)技术对合金晶界和第二相区域定点制备高质量透射电子显微镜(TEM)样品,并采用配备EDS的 JEM 2100F高分辨透射电镜(HRTEM) 对特定微区进行晶格条纹和成分分析。

2 实验结果

2.1 合金组织

图3为不同Cr、Y含量的铸态钒合金的XRD谱。由二元相图可知,由于Cr与V无限固溶[22],Cr、V与Y均不相溶[23,24],且溶质Cr的原子半径(0.1249 nm)小于溶剂V (0.1316 nm)[25],致使各合金中V的衍射峰均向高角度偏移。此外,高含量Cr的固溶导致V90Cr10和V89Cr10Y1、V87Cr10Y3合金中V的衍射峰偏移量分别大于V92Cr8和V91Cr8Y1合金中V的衍射峰偏移量,说明Cr固溶量越多,晶格畸变越大,硬化效果越明显。

图3

图3   不同Cr、Y含量铸态钒合金的XRD谱

Fig.3   XRD spectra of as-cast V alloys (Dash lines show the pure vanadium diffraction peaks)


图4为不同Cr、Y含量的铸态钒合金的SEM像。结合XRD谱(图3)确定V92Cr8和V90Cr10合金为单相固溶体,而V91Cr8Y1、V89Cr10Y1、V87Cr10Y3合金中有细小颗粒(白色)弥散分布于bcc-(V, Cr)固溶体(基体)晶界和枝晶间(图4c~e)。结合V、Cr、Y间的二元相图[22~24]及钒合金中Y元素具有局部聚集的趋势[26]可知,V-Cr-Y中部分白色颗粒为XRD (图3)检测到的α-Y相。此外,上述XRD结果表明,这3种V-Cr-Y合金中存在Y2O3和Y2S3相。并且,Kuwabara等[27]和Kurishita等[28]发现,其制备的含Y钒合金中也存在Y2O3。下文进一步通过TEM确认杂质相的存在,考虑到这些第二相均富集Y元素,统称其为富Y相。

图4

图4   不同Cr、Y含量的铸态钒合金的SEM像

Fig.4   SEM images of as-cast V92Cr8 (a), V90Cr10 (b), V91Cr8Y1 (c), V89Cr10Y1 (d), and V87Cr10Y3 (e) alloys (Insets in Figs.4c-e show the corresponding high magnified images)


为进一步分析铸态V-Cr合金组织及明确V-Cr-Y合金中的富Y相,且考虑到铸态V90Cr10和V87Cr10Y3合金理论上分别与V92Cr8和V91Cr8Y1、V89Cr10Y1合金有相同的组织,下面仅对FIB切片制备的V90Cr10和V87Cr10Y3合金样品进行TEM分析,结果如图56所示。图5为铸态V90Cr10合金晶界处TEM像、EDS结果、HRTEM像及快速Fourier变换(FFT)图。通过晶界EDS线扫描结果(图5b)可知,晶界处存在S偏析,生成了硫化物,不存在O偏析。进一步结合富S区HRTEM像(图5c)及对应FFT图(图5d),确定富S区物相为V3S,且其在(100)晶面出现层错。图6为铸态V87Cr10Y3合金相界处的TEM像、EDS结果、HRTEM像及FFT图。由图6a1中基体到富Y相的元素线扫描结果(图6a2)可知,富Y相中O含量远高于基体。通过高分辨晶格条纹(图6b2)及FFT图(图6c1c2)确定图6b1中部分富Y相为Y2O3,另一部分是与Y2O3毗邻的fcc结构β-Y,即O在Y中的过饱和固溶体。然而,由于V-Cr-Y合金中β-Y含量较少,XRD未能测出(图3)。相比于V和Cr,O与Y的电负性差值更大[29],表明Y对O的亲和力更强,使Y-O优先组合。当富Y液滴中O含量达到Y-O相图[30]共晶成分37.4% (原子分数)时发生共晶反应,形成了β-Y和Y2O3的共晶体,后续由于冷速很快,导致β-Y中的O原子难以扩散,从而使高温过饱β-Y固溶体保留到室温。此外,图6c2c3表明,Y2O3和基体并不共格。图6中富Y相富O的结果与图7中铸态V87Cr10Y3合金的背散射电子(BSE)像和EPMA面扫描图一致。从成分像(图7a)和元素分布(图7b~f)可以判断,图7a颗粒中白色区域为hcp结构α-Y,而浅灰色区域中绝大多数为Y2O3,少数为Y的硫化物,应为XRD测定的Y2S3相(图3)。表1给出了图7a中对应位置的EPMA元素点扫描结果。由表可知,基体位置3处O含量为0,而富Y相位置1、2处O含量分别为14.784%和0.437%。结合图6、7和表1的结果可知,Y对基体具有极其显著的除杂(O、S)能力。综上,确定3种V-Cr-Y合金中部分富Y相为α-Y、Y2O3、Y2S3以及少量β-Y。

图5

图5   铸态V90Cr10合金晶界的TEM像、EDS结果、HRTEM像及快速Fourier变换(FFT)图

Fig.5   TEM image of grain boundary in as-cast V90Cr10 alloy (a), EDS line scan of grain boundary (b), HRTEM image (c), and fast Fourier transform (FFT) map corresponding to Fig.5c (d)


图6

图6   铸态V87Cr10Y3合金相界的TEM像、EDS结果、HRTEM像及FFT图

Fig.6   TEM images of phase boundary (a1) and matrix and Y-rich phase (b1) in as-cast V87Cr10Y3 alloy; EDS line scan from matrix to rich Y-phase in Fig.6a1 (a2); HRTEM images (b2, b3); and FFT maps (c1-c3)


图7

图7   铸态V87Cr10Y3合金的BSE像和EPMA面扫描图

Fig.7   BSE image of as-cast V87Cr10Y3 alloy (a) and EPMA mappings of V (b), Cr (c), Y (d), O (e), and S (f)


表1   图7a中点1~3的EPMA点扫描结果 (mass fraction / %)

Table 1  EPMA point scan results obtained from points 1-3 in Fig.7a

PointVCrYOS
10.745084.47114.7840
21.462098.1000.4370
386.63113.369000

新窗口打开| 下载CSV


2.2 合金成形性能

图8为不同Cr、Y含量铸态钒合金的室温冷轧方向示意图、冷轧实物图和冷轧试样OM像。由图8b可知,V92Cr8和V90Cr10合金在第2、3道次冷轧过程中即明显碎裂,其成形性能很差、脆性显著。进一步结合图8c和d可知,这2种V-Cr合金冷轧后晶粒内部出现相互垂直和平行的裂纹,晶界也因脆化而开裂,且晶界裂纹数量远大于晶内,这表明晶内强度大于晶界强度。然而,铸态V91Cr8Y1、V89Cr10Y1和V87Cr10Y3合金成形性能优异,皆可冷轧成无边裂薄带(图8b)。从轧态组织看(图8e~g),V91Cr8Y1、V89Cr10Y1和V87Cr10Y3合金中大部分富Y相沿冷轧方向被拉长,这意味着其硬度接近或低于各合金的基体硬度。由此可见,Y掺杂并未因引入第二相而硬化合金,且β-Y由于具有fcc结构而促进协同变形。图9为铸态V90Cr10和V87Cr10Y3合金拉伸断口SEM像和V87Cr10Y3合金应力-应变曲线。V90Cr10合金脆性显著,在夹持中已断裂(未发生塑性变形,断后伸长率为0),因此未能给出应力-应变曲线。由图9ab可知,V90Cr10合金以脆性沿晶断裂为主,也伴有少量解理断裂。然而,V87Cr10Y3合金拉伸断口周围有明显的颈缩区(图9c),断口存在韧窝,塑性变形明显,这使得此合金具有30%的断后伸长率(图9d),成形性能优良。因此,Y掺杂可显著提高V合金的成形性能,与Kurishita等[28]和Iwao等[31]实验结果一致。

图8

图8   不同Cr、Y含量铸态钒合金的室温冷轧方向示意图、冷轧实物图及冷轧试样OM像

Fig.8   Cold rolling schematic (a), cold-rolled sample photograph (b), and OM images of cold-rolled V92Cr8 (c), V90Cr10 (d), V91Cr8Y1 (e), V89Cr10Y1 (f), and V87Cr10Y3 (g) alloys (ND—normal direction, RD—rolling direction, TD—transverse direction)


图9

图9   铸态V90Cr10和V87Cr10Y3合金拉伸断口SEM像和V87Cr10Y3合金拉伸应力-应变曲线

Fig.9   Low (a, c) and high (b, d) magnified SEM images of tensile fracture of as-cast V90Cr10 (a, b) and V87Cr10Y3 (c, d) alloys (Inset in Fig.9d shows the stress-strain curve of V87Cr10Y3 alloy)


Vickers硬度(合金硬度)和最大冷轧压下率均可作为评估钒基合金成形性能的指标。图10ab分别为铸态V-Cr和V-Cr-Y合金的硬度(Vickers硬度、纳米压痕硬度)和最大冷轧压下率。如图10a所示,难以冷轧成形的V92Cr8和V90Cr10合金的Vickers硬度分别为201.70和222.94 HV,前者硬度低于后者可归因于后者中更多Cr原子的固溶强化。然而,在V92Cr8和V90Cr10合金中掺杂Y后,对应的V91Cr8Y1及V89Cr10Y1、V87Cr10Y3合金的Vickers硬度均显著减小,分别为108.88、120.59、118.05 HV,相应降低了46.0%、45.9%、47.0% (图10a)。V-Cr-Y合金具有比V-Cr合金更低的Vickers硬度可归因于其基体硬度更低(图10a)。此外,V92Cr8和V90Cr10合金的最大冷轧压下率分别为9.1%和5.3%,显著低于V91Cr8Y1 (94.5%)、V89Cr10Y1 (93.5%)、V87Cr10Y3 (94.4%)合金的最大冷轧压下率(图10b)。这些冷轧压下率、硬度与冷轧实物图均证明这3种V-Cr-Y合金的成形性能优于目前报道[13,32]的所有钒基氢分离合金,如V95Al5、V90Al10、V95Fe5、V90Fe10、V95Al2.5Fe2.5、V90Al5Fe5、(V90Fe5Al5)90Cu10、(V90Fe5Al5)85Cu15。可见,从冷轧成形性能角度考虑,V-Cr-Y体系具有制备超薄合金膜的潜力。

图10

图10   铸态V-Cr和V-Cr-Y合金的硬度和最大冷轧压下率

Fig.10   Vickers hardnesses and nanoindentation hardnesses of matrix (a) and maximum cold-rolling reduction rate (b) of as-cast V-Cr and V-Cr-Y alloys


2.3 氢渗透和抗氢脆性能

基于上述V-Cr-Y具有显著优于V-Cr合金的冷轧成形性能,进一步分析Y掺杂对V合金膜氢渗透性能和抗氢脆性能的影响。图11为铸态V-Cr、V-Cr-Y和商业化Pd77Ag23[33]合金膜在400 ℃下的氢渗透率,水平线代表Pd77Ag23合金膜的氢渗透率,为2.52 × 10-8 mol/(m·s·Pa0.5)。由图可知,V92Cr8、V90Cr10、V91Cr8Y1、V89Cr10Y1和V87Cr10Y3合金膜的氢渗透率分别为7.61 × 10-8、7.39 × 10-8、7.50 × 10-8、7.35 × 10-8和6.66 × 10-8 mol/(m·s·Pa0.5),分别是商业化Pd77Ag23合金膜氢渗透率的3.02、2.93、2.98、2.92和2.64倍。这些结果表明,随着Cr或Y含量增加,V-Cr及V-Cr-Y合金膜的氢渗透率逐渐降低。

图11

图11   400 ℃下铸态V-Cr、V-Cr-Y和Pd77Ag23[33]合金膜的H渗透率

Fig.11   Hydrogen permeability of as-cast V-Cr, V-Cr-Y, and Pd77Ag23[33] alloy membranes at 400 oC


图1213分别为在H2压差为0.7 MPa下铸态V-Cr和V-Cr-Y合金膜的缓冷渗氢曲线和缓冷渗氢后的实物图。由图可知,V92Cr8和V90Cr10合金膜分别缓冷至201.3和170 ℃时H2通量突然增大,合金膜破裂,这表明其抗氢脆性能很差,且根据破裂温度的高低可知,前者的抗氢脆性能差于后者;然而,V91Cr8Y1、V89Cr10Y1和V87Cr10Y3合金膜分别缓冷至38.7、77.4和80.5 ℃时H2通量为0,继续冷却至室温合金膜未破裂,表明其具有优良的抗氢脆性能。结合图8~10结果表明,Y掺杂不仅有助于提高V合金膜的冷轧成形性能,而且也优化了抗氢脆性能。

图12

图12   铸态V-Cr和V-Cr-Y合金膜缓冷渗氢曲线

Fig.12   Hydrogen permeation curves of as-cast V-Cr and V-Cr-Y alloy membranes obtained at a slow cooling rate of 2.5 oC/min and hydrogen pressure difference of 0.7 MPa


图13

图13   铸态V-Cr和V-Cr-Y合金膜缓冷渗氢后的实物图

Fig.13   Optical images showing surface integrity of hydrogen permeated membranes of V-Cr and V-Cr-Y alloys

(a) V92Cr8 (b) V90Cr10 (c) V91Cr8Y1 (d) V89Cr10Y1 (e) V87Cr10Y3


3 分析讨论

3.1 成形性能分析

结合V90Cr10合金中实测O含量(0.039%,质量分数)远低于室温下O在纯V中的固溶度(1.03%,质量分数)[34]及V90Cr10为单相合金和其晶界未出现O偏析(图35)可知,V90Cr10合金中0.039%的O全部固溶于晶格间隙。然而,微区成分(图7表1)分析表明,与V90Cr10合金中O含量处于同一水平的V87Cr10Y3合金中O (实测0.036%,质量分数)基本全部被富Y相吸收,基体中O含量远低于V90Cr10合金。鉴于V90Cr10和V87Cr10Y3合金中O含量处于同一水平和前者基体中O含量远高于后者,以及O的固溶可显著硬化、脆化V及其合金[18~20]可知,固溶态O导致V92Cr8和V90Cr10合金被显著硬化、脆化,在冷轧过程中产生晶内裂纹(图8cd)。同时,考虑到原料的纯度和S在V中的固溶度为0[35]可知,S并不是引起V-Cr合金固溶硬化的因素。但V90Cr10合金中S在开裂晶界偏析(图5)说明S应是脆化V90Cr10合金晶界的主因。由于V92Cr8与V90Cr10合金的成分相近和组织类似(图3图4ab),以及均展现出一致的晶界开裂现象(图8),可推测V92Cr8合金晶界也存在同一水平浓度的S偏析,2者拥有相同的脆化机理。O在V中具有很高的负溶解能,且比C、N和H间隙原子更负,导致O在V中的固溶度更大,极高的负溶解能导致V及其合金中不可避免地残留O[36,37]。一些研究[18,19,38~40]发现,O可显著硬化、脆化V及其合金,而V在O含量为1.7% (原子分数)时完全脆化,且原子的置换固溶会进一步降低钒合金脆化时的O含量。变形脆裂的V90Cr10合金(图8bd图9ab)中O含量(0.12%,原子分数,即0.039%,质量分数)低于1.7%进一步证实了此观点。同样,O的存在也可脆化、硬化同一族(VB)金属Nb[41]。通过计算模拟可知,Nb中O可以产生与螺型位错排斥的随机力场,其促进螺型位错的交叉扭结,进而产生大量空位[41~43],空位与O原子的相互吸引又会导致许多稳定空位-O原子复合体的形成[36,41,44],其强烈钉扎螺型位错,形成Orowan位错环[41]。这种模拟得到的Orowan位错环在含氧V中被真实观察到[19,41],且考虑到V具有与Nb相同的滑移系,推断含氧V变形时O与螺型位错的作用机理应与Nb相同。因此,V中O也能产生与螺型位错排斥的力场,进而促进螺型位错的交叉扭结及空位-O原子复合体对螺型位错的钉扎,导致位错难以滑移,这是O硬化V92Cr8和V90Cr10合金的机制。由于O与空位间具有很强的吸引力[36,44],使形成的空位-O原子复合体在变形过程中可以持续捕获与螺型位错作用时产生的新空位[41],导致更多空位-O原子复合体连接而形成纳米管,这些纳米管聚集合并,导致微裂纹萌生[19,40,43],从而导致V92Cr8和V90Cr10合金冷轧过程中晶内开裂,这是O脆化V-Cr合金的机制。另外,Jo等[45]研究表明,间隙O的存在会使V在变形过程中产生晶格摩擦力而抑制位错移动、降低裂纹扩展阻力,形成解理断口,这是O导致V92Cr8和V90Cr10合金脆化的另一机制。这3种机制支配V92Cr8和V90Cr10合金冷轧时产生晶内裂纹(图8cd)。考虑含氧V[19]在{112}滑移面上形成引起脆化的螺型位错,含氧Nb[41]在拉伸过程中沿{110}和{112}晶面进行滑移并沿{110}断裂,以及结合bcc结构主要滑移面{110}、{112}中一些晶面夹角为90°的晶体学关系,推断V-Cr合金中相互垂直和平行的裂纹(图8cd)来自{110}或{112}晶面。除晶内裂纹外,晶界脆化也是V92Cr8和V90Cr10合金脆化的显著体现。S在V中具有强烈的晶界偏析倾向[46],使V90Cr10合金晶界处存在S的偏析(图5b)。同样,V和V-Ti-Cr合金晶界处也出现了S的偏析,但S偏析程度较大的V-Ti-Cr合金才能出现沿晶断口[20,45],这说明S偏析需要达到一个阈值水平才能显著脆化晶界,这也合理地解释了存在S偏析的钒合金只出现解理断口的原因。具有沿晶断口的V-Ti-Cr合金[20]晶界处的S浓度为3.2% (原子分数),而V90Cr10合金晶界处S浓度(图5b)远高于这一值,这使V90Cr10合金变形时产生晶界裂纹(图8cd)和沿晶断口(图9ab),且V92Cr8合金也是如此。此外,V3S中层错的出现(图5c)说明其层错能较低,位错难以滑移,更易造成V90Cr10合金在冷轧变形时沿晶开裂,这也是V92Cr8合金晶界脆化的一个原因。

基于O对V-Cr合金晶界脆化的问题讨论,这也引起了研究人员对Cr是否会脆化晶界的关注。Zhang等[47]通过理论计算分析了Cr对V合金晶界影响,发现相比于晶粒内部,Cr有弱的晶界偏析倾向,这与Lee等[48]的计算结果相反,但这些计算结果都显示Cr能够增强晶界内聚力。由此看来,Cr并不能脆化V-Cr合金晶界。

相比于V和Cr,Y对固溶于V中的O和晶界偏析的S有更强的消纳作用(图7),这可从热力学角度进行分析。图14是利用HSC 6.0软件计算得到的V、Cr、Y与等量O、S反应生成的氧化物、硫化物的Gibbs自由能变化(ΔG)。由图可见,在0~2000 ℃范围内,所有V和Cr氧化物的ΔG均大于Y2O3 (图14a),硫化物的ΔG也均大于Y2S3 (图14b),且相比于V和Cr,O、S与Y的电负性差值也更大[29]。这些结果表明,Y对O、S的亲和力更强,V-Cr-Y合金凝固时,O和S更易与Y优先反应。因此,V-Cr-Y合金基体中的O和S含量极低,从而避免了O-空位复合体对螺型位错的钉扎,也消除了S引起的合金晶界脆化,致使V91Cr8Y1、V89Cr10Y1和V87Cr10Y3合金具有优良的冷轧成形性能。

图14

图14   V、Cr、Y氧化物和硫化物的Gibbs自由能变化(ΔG)

Fig.14   Gibbs free energy changes (ΔG) of oxides (a) and sulfides (b) of V, Cr, and Y


3.2 氢渗透与抗氢脆性能分析

氢在致密金属膜中的渗透遵循“溶解-扩散”机理,氢渗透率(Φ)可表示为[49]

Φ=DK

式中,DK分别为扩散系数和溶解系数。一些研究表明,Cr在V中固溶会使H原子扩散激活能升高[50],且H在Cr中的溶解焓高于V [51]而不利于H的溶解。因此,相比于V90Cr10或V89Cr10Y1合金膜,V92Cr8或V91Cr8Y1合金膜的氢渗透率更高(图11)。此外,V89Cr10Y1的氢渗透率高于V87Cr10Y3合金膜原因如下:(1) 导氢相bcc-(V, Cr)固溶体体积分数更大,(2) bcc-(V, Cr)固溶体中Cr的含量更低。

V90Cr10合金膜的抗氢脆性能优于V92Cr8合金膜(图12)是因为Cr的H溶解焓和氢化物生成焓均高于V[51],这使V90Cr10合金膜斥氢能力更强,膜中H原子固溶量相对更低,从而产生的内应力更小,膜不易破裂。此外,稀土Y氢化物的生成焓比纯V更负 (ΔHV = -35 kJ/mol,ΔHY = -114 kJ/mol) [51],因而含Y的钒合金膜会因吸氢更多而产生更大的内应力,使膜更易破裂。如果据此分析,V92Cr8和V90Cr10合金膜的抗氢脆性能应优于对应的V91Cr8Y1、V89Cr10Y1和V87Cr10Y3合金膜。然而,事实(图1213)并非如此,这可从稀土Y的存在形式及其具有显著除杂能力的角度进行分析。首先,Y不固溶于基体bcc-(V, Cr)固溶体相,因而Y不会引起基体中H的吸收。其次,图367表明,稀土Y在V-Cr-Y三元体系中优先除去基体中的O和S,进而形成稀土化合物(Y2O3、Y2S3)和含O的α-Y、β-Y固溶体,这软化了基体,降低了基体中的内应力,有助于提高基体的抗氢脆性能。此外,富Y相中O和S的存在也弱化了Y的吸氢作用,从而有效改善了合金组织氢脆敏感性,使上述3种V-Cr-Y合金膜的抗氢脆性能显著优于V92Cr8和V90Cr10合金膜。

鉴于Y净化杂质而获得成形性能和抗氢脆性能均优的V-Cr-Y合金,可以扩展Y的作用效果以提高其他V合金,甚至Nb合金的成形性能和抗氢脆性能。此外,考虑稀土元素具有类似性质,有必要研究其他单一或混合稀土元素的掺杂对净化V和Nb合金中O、S等杂质元素的效果,以促进成形性能和抗氢脆性能均优的高通量氢分离合金膜的研发。

4 结论

(1) 稀土Y的掺杂使铸态单相V-Cr合金的等轴晶转变为bcc-(V, Cr)固溶体枝晶和弥散分布于枝晶间的稀土Y化合物(Y2O3、Y2S3)和含氧Y固溶体(α-Y、β-Y)颗粒的复合组织。稀土Y对O、S杂质元素具有极强的亲和力,通过形成稀土Y化合物和固溶体的方式净化V-Cr-Y合金基体中O、S杂质。

(2) 铸态V-Cr合金由于O的固溶和S的晶界偏析硬而脆,冷轧开裂而无法轧制成膜。但向V-Cr合金中掺杂稀土Y后,由于Y净化了基体中的O、S而使V-Cr-Y合金软化,导致V合金最大冷轧压下率显著提高,V-Cr-Y合金可冷轧成无裂纹薄带。相比于V-Cr合金,V-Cr-Y合金的硬度降低了40%~50%,最大冷轧压下率从低于10%提高到了90%以上,展现出优异的成形性能。

(3) 铸态V-Cr合金中稀土Y的掺杂导致导氢相bcc-(V, Cr)固溶体减少和bcc-(V, Cr)中斥氢Cr含量增加,使V合金的氢渗透率降低。Y含量越高,渗透率越低。高Y含量的V87Cr10Y3合金膜的氢渗透率(6.66 × 10-8 mol/(m·s·Pa0.5))最低,但仍是商业化Pd77Ag23合金膜的2.64倍。稀土Y净化O、S的能力显著改善组织氢脆敏感性,使V-Cr-Y合金膜具有优异的抗氢脆性能,可缓冷至室温而不破裂,而V-Cr缓冷至室温无法保持膜的完整性。

参考文献

Zhang Y S, Dong D, Xiao Y, et al.

Current status and trends in energy production, consumption, and storage under carbon neutrality conditions in China

[J]. Chin. Sci. Bull., 2021, 66: 4466

[本文引用: 1]

张永生, 董 舵, 肖 逸 .

我国能源生产、消费、储能现状及碳中和条件下变化趋势

[J]. 科学通报, 2021, 66: 4466

[本文引用: 1]

Cao J W, Zhang W Q, Li Y F, et al.

Current status of hydrogen production in China

[J]. Prog. Chem., 2021, 33: 2215

DOI      [本文引用: 1]

<p id="p00005">Hydrogen energy is an efficient and clean secondary energy that plays an irreplaceable role in realizing "carbon neutral". With the continuous expansion of hydrogen production scale and the reduction in hydrogen production cost, hydrogen energy will become a competitive alternative energy, which can further promote the transformation of China’s energy structure, reduce carbon emissions, and improve China’s energy security and resilience. China is the world’s largest producer of hydrogen, and there are three main industrial hydrogen production routes in China: fossil fuel reforming, industrial by-product hydrogen and the electrolysis of water. Other new hydrogen production technologies, such as hydrogen production from solar photolysis, hydrogen production from biomass, hydrogen production from thermochemical circulation, etc., have attracted extensive attention and investigations. In addition, hydrogen production system is complex, which is difficult for modeling and optimization. Accordingly, artificial intelligence (AI) shows unique advantages in the prediction, evaluation and optimization for hydrogen production system, which is promising and attractive. Based on the recent progress, this article summarizes several critical hydrogen production technologies into four main categories, and further proposes some perspectives for the future development of hydrogen supply structure in China. Finally, this article also reviewes the latest application of artificial intelligence in hydrogen production system to provide new insights for the development of hydrogen production technology in China.</p> <p><strong>Contents</strong></p> <p>1 Introduction</p> <p>2 Hydrogen production from conventional fossil fuel reforming</p> <p>2.1 Hydrogen production from coal</p> <p>2.2 Hydrogen production from natural gas</p> <p>3 Industrial by-product hydrogen</p> <p>3.1 Pressure swing adsorption</p> <p>3.2 Low temperature separation</p> <p>3.3 Membrane separation</p> <p>3.4 Metal hydride separation</p> <p>4 Hydrogen production from water electrolysis of clean energy</p> <p>4.1 AEC</p> <p>4.2 PEMEC</p> <p>4.3 SOEC</p> <p>5 Hydrogen production from other new technologies</p> <p>5.1 Hydrogen production from solar photolysis of water</p> <p>5.2 Hydrogen production from biomass fermentation</p> <p>5.3 Hydrogen production from thermochemical conversion of biomass</p> <p>5.4 Hydrogen production from thermochemical cycle</p> <p>6 Comparison of different hydrogen production methods</p> <p>7 Application of artificial intelligence in hydrogen production system</p> <p>8 Conclusion and outlook</p>

曹军文, 张文强, 李一枫 .

中国制氢技术的发展现状

[J]. 化学进展, 2021, 33: 2215

[本文引用: 1]

Li X G.

Status and development of hydrogen preparation, storage and transportation

[J]. Chin. Sci. Bull., 2022, 67: 425

李星国.

氢气制备和储运的状况与发展

[J]. 科学通报, 2022, 67: 425

Li Z Y, Huang W, Zhang C F.

Research progress on high purity hydrogen purification technology for fuel cell

[J]. Energy Chem. Ind., 2020, 41(5): 1

[本文引用: 1]

李忠于, 黄 伟, 张楚璠.

燃料电池用高纯氢纯化技术研究进展

[J]. 能源化工, 2020, 41(5): 1

[本文引用: 1]

Jiang P, Huang H C, Sun B L, et al.

Microstructure, mechanical properties and hydrogen permeability of multiphase V-Ti-Ni alloy membranes

[J]. Mater. Today Commun., 2020, 24: 101112

[本文引用: 1]

Dolan M D.

Non-Pd BCC alloy membranes for industrial hydrogen separation

[J]. J. Membr. Sci., 2010, 362: 12-28

[本文引用: 1]

Griessen R, Riesterer T.

Heat of formation models

[A]. Hydrogen in Intermetallic Compounds I [M]. Berlin: Springer, 1988: 219

[本文引用: 1]

Suzuki A, Yukawa H, Ijiri S, et al.

Alloying effects on hydrogen solubility and hydrogen permeability for V-based alloy membranes

[J]. Mater. Trans., 2015, 56: 1688

[本文引用: 2]

Dolan M D, Kellam M E, McLennan K G, et al.

Hydrogen transport properties of several vanadium-based binary alloys

[J]. Int. J. Hydrogen Energy, 2013, 38: 9794

[本文引用: 1]

Dolan M D, McLennan K G, Way J D.

Diffusion of atomic hydrogen through V-Ni alloy membranes under nondilute conditions

[J]. J. Phys. Chem., 2012, 116C: 1512

Yukawa H, Nambu T, Matsumoto Y.

V-W alloy membranes for hydrogen purification

[J]. J. Alloys Compd., 2011, 509: S881

[本文引用: 1]

Li X Z, Huang F F, Liu D M, et al.

V-Cr-Cu dual-phase alloy membranes for hydrogen separation: An excellent combination of ductility, hydrogen permeability and embrittlement resistance

[J]. J. Membr. Sci., 2017, 524: 354

[本文引用: 3]

Li X Z, Huang F F, Su Y Q, et al.

Development of dual-phase V90Fe5Al5/Cu alloys for enhanced malleability and sustainable hydrogen permeability

[J]. J. Membr. Sci., 2019, 591: 117325

[本文引用: 1]

Ishikawa K, Tokui S, Aoki K.

Microstructure and hydrogen permeation of cold rolled and annealed Nb40Ti30Ni30 alloy

[J]. Intermetallics, 2009, 17: 109

Li X Z, Liu D M, Liang X, et al.

Hydrogen transport behavior of as-cast, cold rolled and annealed Nb40Ti30Co30 alloy membranes

[J]. J. Membr. Sci., 2016, 514: 294

Tang H X, Ishikawa K, Aoki K.

Changes in hydrogen permeability and microstructures of Nb-(Ti, Zr)Ni alloys by cold rolling and annealing

[J]. Mater. Trans., 2007, 48: 2454

Kato T, Ishikawa K, Aoki K.

Effect of Ti/Ni ratio and annealing on microstructure and hydrogen permeability of Nb-TiNi alloy

[J]. Mater. Trans., 2008, 49: 2214

[本文引用: 2]

Kainuma T, Iwao N, Suzuki T, et al.

Effects of oxygen, nitrogen and carbon additions on the mechanical properties of vanadium and V/Mo alloys

[J]. J. Nucl. Mater., 1979, 80: 339

[本文引用: 3]

Zhang J, Han W Z.

Oxygen solutes induced anomalous hardening, toughening and embrittlement in body-centered cubic vanadium

[J]. Acta Mater., 2020, 196: 122

DOI      [本文引用: 4]

Vanadium (V) is sensitive to minute quantity of oxygen interstitials, which induce pronounced hardening and embrittlement. Here, we utilize oxygen to synthesize V solid solutions in order to reveal the mechanism of oxygen solutes induced hardening. With increasing of oxygen solute concentrations, the fracture modes of V samples transform from dimple, to a mixture of dimple and cleavage, and to a fully trans-granular cleavage. High density of dislocations and dislocation debris are produced in strained samples. The mobility of screw dislocations is reduced and the dislocation cross-slip events are promoted by oxygen solutes. In addition to oxygen solution hardening, the generation of high density of oxygen-vacancy complexes plays a dominant role in the strengthening. High quantity of loop-shaped dislocation debris are direct evidence for the formation of oxygen-vacancy complexes. Profuse oxygen-vacancy complexes trap dislocations, promote cross-slips and assist dislocation storage, thus give rise to a superior combination of strengthening, strain hardening, and ductility in V with 1.0 at% of oxygen. Once beyond a critical oxygen concentration (>1.6 at%), V shows catastrophic brittle failure due to the exceptional high density of oxygen-vacancy complexes. These findings provide insight to design high performance refractory metals utilizing oxygen solutes. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd.

Kurtz R J, Hamilton M L, Li H.

Grain boundary chemistry and heat treatment effects on the ductile-to-brittle transition behavior of vanadium alloys

[J]. J. Nucl. Mater., 1998, 258-263: 1375

[本文引用: 4]

Xu L Q, Hu X P, Jiang S N, et al.

Study on microstructure and mechanical properties of Y2O3 particle reinforced vanadium alloy

[J]. Hot Work. Technol., 2021, 50(22): 50

[本文引用: 1]

徐立群, 胡心平, 姜少宁 .

Y2O3颗粒增强钒合金的组织及力学性能的研究

[J]. 热加工工艺, 2021, 50(22): 50

[本文引用: 1]

Smith J F, Bailey D M, Carlson O N.

The Cr-V (chromium-vanadium) system

[J]. J. Phase Equilib., 1982, 2: 469

[本文引用: 2]

Massalski T B, Murray J L, Bennett L H, et al. Binary Alloy Phase Diagrams (Volume 2) [M]. Metals Park, Ohio: American Society for Metals, 1986: 2154

[本文引用: 1]

Venkatraman M, Neumann J P.

The Cr-Y (Chromium-yttrium) system

[J]. Bull. Alloy Phase Diagr., 1985, 6: 429

[本文引用: 2]

Senkov O N, Miracle D B.

Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys

[J]. Mater. Res. Bull., 2001, 36: 2183

[本文引用: 1]

Deng L, Zhang X M, Tang J F, et al.

First-principles study of the binding preferences and diffusion behaviors of solutes in vanadium alloys

[J]. J. Alloys Compd., 2016, 660: 55

[本文引用: 1]

Kuwabara T, Kurishita H, Hasegawa M.

Development of an ultra-fine grained V-1.7 mass% Y alloy dispersed with yttrium compounds having superior ductility and high strength

[J]. Mater. Sci. Eng., 2006, A417: 16

[本文引用: 1]

Kurishita H, Kuwabara T, Hasegawa M.

Development of fine-grained V-28Cr-2.3 Y and V-52Cr-1.8Y alloys with superior mechanical properties

[J]. Mater. Sci. Eng., 2006, A433: 32

[本文引用: 2]

Gordy W, Thomas W J O.

Electronegativities of the elements

[J]. J. Chem. Phys., 1956, 24: 439

[本文引用: 2]

Carlson O N.

The O-Y (oxygen-yttrium) system

[J]. Bull. Alloy Phase Diagr., 1990, 11: 61

[本文引用: 1]

Iwao N, Kainuma T, Suzuki T, et al.

Ductility of V-Cr and V-Cr-Zr alloy ingots

[J]. J. Less-Common Met., 1981, 79: 19

[本文引用: 1]

Kim K H, Park H C, Lee J, et al.

Vanadium alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement

[J]. Scr. Mater., 2013, 68: 905

[本文引用: 1]

Paglieri S N, Wermer J R, Buxbaum R E, et al.

Development of membranes for hydrogen separation: Pd coated V-10Pd

[J]. Energy Mater., 2008, 3: 169

[本文引用: 3]

Alexander D G, Carlson O N.

The V-VO phase system

[J]. Metall. Trans., 1971, 2: 2805

[本文引用: 1]

Yu J Q, Yi W Z, Chen B D, et al. Binary Alloy Phase-Diagrams [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1987: 547

[本文引用: 1]

虞觉奇, 易文质, 陈邦迪 . 二元合金状态图集 [M]. 上海: 上海科学技术出版社, 1987: 547

[本文引用: 1]

Zhang P B, Zhao J J, Zou T T, et al.

A review of solute-point defect interactions in vanadium and its alloys: First-principles modeling and simulation

[J]. Tungsten, 2021, 3: 38

[本文引用: 3]

Qin J Y, Wang Z M, Wang D H, et al.

Dissolution, diffusion, and penetration of H in the group VB metals investigated by first-principles method

[J]. Int. J. Hydrogen Energy, 2019, 44: 29083

[本文引用: 1]

Heo N J, Nagasaka T, Muroga T, et al.

Effect of impurity levels on precipitation behavior in the low-activation V-4Cr-4Ti alloys

[J]. J. Nucl. Mater., 2002, 307-311: 620

[本文引用: 1]

Bradford S A. The effect of oxygen on physical and mechanical properties of vanadium [D]. Iowa: Iowa State University, 1961

Beale H A, Arsenault R J.

The preparation and some mechanical properties of high-purity vanadium

[J]. Metall. Trans., 1970, 1: 3355

[本文引用: 2]

Yang P J, Li Q J, Tsuru T, et al.

Mechanism of hardening and damage initiation in oxygen embrittlement of body-centred-cubic niobium

[J]. Acta Mater., 2019, 168: 331

[本文引用: 7]

Dutta A.

Compressive deformation of Fe nanopillar at high strain rate: Modalities of dislocation dynamics

[J]. Acta Mater., 2017, 125: 219

Lee H J, Wirth B D.

Molecular dynamics simulation of dislocation-void interactions in BCC Mo

[J]. J. Nucl. Mater., 2009, 386-388: 115

[本文引用: 2]

Zhang X M, Li Y F, He Q L, et al.

Investigation of the interstitial oxygen behaviors in vanadium alloy: A first-principles study

[J]. Curr. Appl. Phys., 2018, 18: 183

[本文引用: 2]

Jo M G, Madakashira P P, Suh J Y, et al.

Effect of oxygen and nitrogen on microstructure and mechanical properties of vanadium

[J]. Mater. Sci. Eng., 2016, A675: 92

[本文引用: 2]

Diercks D R, Loomis B A.

Alloying and impurity effects in vanadium-base alloys

[J]. J. Nucl. Mater., 1986, 141-143: 1117

[本文引用: 1]

Zhang P B, Li X J, Zhao J J, et al.

Atomic investigation of alloying Cr, Ti, Y additions in a grain boundary of vanadium

[J]. J. Nucl. Mater., 2016, 468: 147

[本文引用: 1]

Lee S, Yi Y, Bee P.

First-principles study of segregation behavior of Cr/Ti/Y at grain boundary in vanadium

[J]. Int. J. Mater. Mech. Manuf., 2018, 6: 31

[本文引用: 1]

Huang F F, Li X Z, Shan X R, et al.

Hydrogen transport through the V-Cr-Al alloys: Hydrogen solution, permeation and thermal-stability

[J]. Sep. Purif. Technol., 2020, 240: 116654

[本文引用: 1]

Lu Y L, Gou M M, Bai R M, et al.

First-principles study of hydrogen behavior in vanadium-based binary alloy membranes for hydrogen separation

[J]. Int. J. Hydrogen Energy, 2017, 42: 22925

[本文引用: 1]

Griessen R, Riesterer T.

Heat of formation models

[A]. Hydrogen in Intermetallic Compounds I: Electronic, Thermodynamic, and Crystallographic Properties, Preparation [M]. Berlin: Springer, 1988: 219

[本文引用: 3]

/